
MAE 434W/435 Capstone Project:

Development of An Underwater Autonomous Vehicle

Faculty Advisors:

Dr. Krishnanand Kaipa, Dr. Cong Wei

Project Team Members:

William Buhrig, Justin Day, Nick Eoff, Tom Herlihy, Matthew Laverty, Colin Sizemore

1

Table of Contents

Table of Contents... 2
List of Figures..2
Abstract..3
Introduction..3
Methods..4

Completed Methods...4
Proposed Methods..6

Results..8
Discussion..9
Conclusion... 10
Appendices...11
References..17

List of Figures

A1.1: Python code for the AUV Basestation Control System... 13
A1.2: Python code for the AUV Drone Control System... 14
A2.1: Project Budget..15
A3.1: GANTT Chart for MAE 434W Discussions and Project Work...15
A3.2: GANTT Chart for MAE 435 Project Work... 16

2

Abstract

This report will be about the MAE 434W/435 senior design project titled “Development

of an Underwater Autonomous Vehicle.” This project deals with an underwater autonomous

vehicle, or AUV that is 15.5 inches high, and 5 inches wide. It is propelled by four thrusters

powered by brushless DC motors and controlled by eight potentiometers. The scope of the

project was to test and modify the existing AUV design. Initial tests were done to ensure that the

motors operated correctly and to determine where water infiltration occurred. Although the

motors were fully functional, the design was modified so that the AUV is now operated by a

single PlayStation 3 controller. Initially, a small amount of water infiltrated the AUV when it was

submerged in water. Consequently, the design was modified to create a completely waterproof

design. Finally, a properly calculated ballast was installed to achieve neutral buoyancy.

Introduction

The automation of technology has been of noted importance to engineers. Automated

technologies have been utilized in many industries, for example in the automotive, aviation, and

manufacturing. Underwater exploration has utilized automation as well through the use of

autonomous underwater vehicles, or AUVs. An example of a use case for autonomous

underwater vehicles is for “exploring the diverse oceanography of Spain” [1]. Another example

of the use of autonomous underwater vehicles was “monitoring undersea cables for damage by

using the electromagnetic field from the cables to direct the AUV” [2]. Controlling AUVs also

greatly varies between models, as one reference showed “the use of a fuzzy PID controllers in

AUVs have been adopted widely by the industry” [3]. Another design for autonomous control is

“combining sonar and real-time path planning to allow the AUV to operate in unknown

environments” [4]. The future of AUV technology has been foretold to be “RaspberryPi based

3

computer navigation systems, energy harvesting, and high-speed underwater communication”

[5]. Thus, the need for a low-cost AUV has been established.

The purpose of the project is to find a low-cost solution to the development of

autonomous underwater vehicles. Projects like Bluefin for example “utilize sophisticated

navigation, control, and power systems” which are costly to develop [5]. If one is lost the time to

build another would take a long period of time. Utilizing a low-cost design would allow for more

AUVs to be utilized in applications like “search and rescue, salvage operations, oceanographic

mapping” [5].

Methods

Completed Methods

To provide a visual representation of the new AUV control system, a python-based

interface was developed. The system takes input from a PlayStation 3 (Sony Interactive

Entertainment, San Mateo, CA) controller and depicts the outputs in a visual format. The output

for the thrusters is represented by a vertical bar whose height increases as thruster output

increases. The position of the front of the drone is represented by a circular dot inside of a

square, with the dot moving inside of the square based upon control input. Drone depth is also

represented in a similar manner to thruster output, with a vertical bar whose height decreases as

depth decreases. The code for this method has been included in Appendix A.

To ensure the AUV is appropriately ballasted two approaches were taken. The first was a

theoretical calculation based on the internal volume of air inside the AUV and the volume of the

AUV’s resin hull and applying those to the buoyant force formula: . This would
𝑉
𝑆𝑢𝑏

𝑉
𝑇𝑜𝑡𝑎𝑙

=
ρ
𝑎𝑣𝑔,𝑏𝑜𝑑𝑦

ρ
𝑓𝑙𝑢𝑖𝑑

4

be compared to the density of water, which is 997 kilograms per meter cubed, and the resulting

displacement of the AUV came out to five and a half pounds of water. This simple calculation

will be compared to a computer scan of the AUV to verify its displacement. Water testing was

also performed, which involved immersing it in forty gallons of water in a closed environment.

When unladen the AUV would not sink, however when five pounds of lead diving weight and

the approximately three pound battery were loaded into the AUV it sank reliably.

Due to the discovery of the hull slowly deteriorating when immersed in water, the AUV

was coated with a protective layer of sealant to prevent material deterioration when submerged in

water. This material type that we have chosen is contact cement that was applied by hand using a

brush. The coating was checked to ensure the solvents used in its formulation did not attack the

acrylic plastic which the AUV hull is constructed from. It was also tested during a long term

submersion test prior to application where a section of the same plastic was coated and immersed

in water for twenty-four hours. At the end of testing it was found that the coating had protected

the section. The coating was applied in two coats by hand. In all subsequent immersion tests the

outermost layers of acrylic plastic did not become soft or wear away.

To adequately waterproof the AUV and protect it from water ingression several different

methods were tested. To understand the original state of waterproofing the single o-ring between

a top and bottom grove was tested and water was found inside the hull after ten minutes of

testing. At the suggestion of Dr. Kaipa, it was decided to test using rubber gloves and balloons as

material to fill any gaps in the grooves which are not occupied by the o-ring. The latex gloves

had a thickness of approximately 0.005in and the balloons had a thickness of approximately 0.01

inch. Water was found inside the AUV after testing with the latex gloves but not with the

balloons. Despite the promising results of this early test any subsequent test was not able to

5

replicate the results of the first balloon test. As no permanent modifications could be made to the

AUV hull itself, it was decided clay would be used to seal the top cap to the hull as its

malleability would allow the grooves where the o-ring is placed to be fully sealed. Before that

test was performed it was decided to ensure each cable which penetrated the hull had its

mountings secured. After testing with the clay seal no water was found inside the AUV. This

result was found repeatedly with subsequent tests.

The control system has been massively changed from its original design. Originally the

drone was controlled using four potentiometers connected to a PWM signal generator. The PWM

was sent to the ESC driver boards which commanded each motor. This system was not

ergonomic nor was it optimal for future automation. This system was discarded in favor of a

Raspberry Pi which outputs PWM signals from a Python-based software generator using the

library RPi.GPIO. The AUV was changed to a joystick based game console controller which

utilized a Python code to generate control inputs. These control inputs were communicated to the

AUV using a laptop computer and wireless internet router on the same network, where the router

would receive the control inputs and communicate them to the AUV using internet socket

communication. Total wireless communication was tested using the Raspberry Pi’s wireless

communication capabilities however they were unsuccessful.

Proposed Methods

For future proposed methods for the sister AUV team, full autonomy should not be too

far from accomplishment. The control system can be connected to a wireless wifi router which

connects to the raspberry pi. A PWM generator board will be used in conjunction with the

Raspberry Pi to generate more precise and stable PWM signals. A terminal block hat for the

Raspberry Pi will be used as a more permanent connection system to the AUV hull. A chassis

6

system will be implemented so the Raspberry Pi, battery pack, and other navigational and

propulsion equipment can be easily retrieved and inserted into the AUV to improve modularity,

mission capabilities, and packing density.

While the ballast system has improved from its previous state, active ballasting should be

pursued as the implemented system rather than the passive ballasting currently used. The

proposed system for active ballasting is to utilize the ballasting systems used by naval

submarines. This system would use volumes of air in syringes or bottles which can be displaced

with water when the AUV needs to dive and replaced with air when the AUV needs to ascend.

The initial ballast system should still remain to help the diving capability of the AUV when an

active system is implemented.

To help guide the design process and parameters for the AUV, several standards will be

utilized. The American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel

Code will be utilized to ensure the AUV does not fail due to water pressures which increase with

depth. ANSI/ABYC E-13-2022 will be relevant if lithium-ion batteries are used to power the

drone if a change of battery type is decided for better buoyancy or otherwise. While currently

under development, ISO/AWI 20682 Autonomous Underwater Vehicles - Risk and Reliability

will give additional guidance on general testing the electronic systems of the AUV. Finally, to

provide guidance for waterproofing testing, the Ingress Protection Code (IP Code) will be

utilized with the drone needing to be of an IP Code rating of 9 for zero water infiltration.

7

Results

Waterproofing the AUV was one of the major facets of the project and after trying

various methods and many tests, we have accomplished complete waterproofness. We found that

clay provided an adequate water sealant for the AUV. After several tests at various depths and

temperatures, we found that the clay completely stopped water infiltration.

The issue of resin deterioration was also fixed. After coating the entire outer surface of

the AUV with a waterproof epoxy, we found that there has been no resin breakdown. We have

continued to monitor the AUV for resin breakdown, and after almost two months since applying

the epoxy, there has been no more resin deterioration.

Furthermore, we have implemented a correctly calculated ballast system. Using buoyancy

force calculations, we determined that five and a half pounds of weight need to be added to the

AUV to overcome the buoyancy force. To do this, we mounted four PVC pipes filled with lead

shot to the exterior of the AUV. After testing with these added weights we found that the AUV is

now neutrally buoyant.

Finally, the improved control system design has been fully implemented. While before

the AUV’s propellers were controlled by turning four different potentiometers, they are now

operated by a hand-held PlayStaion3 controller. We have been able to program the foundations to

the remote control system in Python. This foundation is a telecommunications console, running

on a laptop, that allows any Human Interface Device, Flight-Stick or Wireless Controller, to be

used as an input. Once this input signal is received the program will translate the input signal to

a corresponding output on the display and eventually to a serial link between the remote control

station and the drone.

8

Additionally, to allow the drone to operate, a Raspberry Pi (Raspberry Pi Foundation,

Caldecote, UK) computer receives commands via a control cable. The computer takes the signals

generated from the control system interface, a laptop computer, via a human interface device,

parses the signal, then sends it to the AUV. The AUV will in turn receive the signal and move

according to the user input. These results serve as a foundation for making the control systems of

the drone architecture capable of supporting a radio interface device for future progress.

Discussion

It is recommended that for future work that a number of improvements be made. The

current AUV team has set up multiple routes for improvements in the future. The main

improvement being to develop autonomy. For developing autonomy, the code written to fully

operate the thrusters can also be used for autonomous purposes. Once the ethernet cord is

plugged into the wifi router, the router can then connect to the raspberry pi, hence running

wirelessly. The kinks that need to be worked out include slight modifications to the current code,

a system where the wifi router can connect to the raspberry pi above water. If a future team is

able to find a way to keep the raspberry pi above water and run a control system underwater to

the AUV, this would be the best option for autonomy.

It is believed that some sort of buoy system that is above water is the best option for

autonomy. If the AUV were able to be tethered to the buoy, this would be ideal. Over time, the

current AUV team believes this is the closest to full autonomy that this project can come. The

main reason being is because there are not many, if any, known ways to get communication

commands through the water to something wirelessly (within amateur bands).

9

Conclusion

Over the course of the AUV project, multiple milestones have been accomplished. The

AUV has developed complete waterproofing, become neutrally buoyant, and zero degradation of

exterior material. The control system was drastically improved; it initially took eight different

potentiometers to control and has been upgraded to one PlayStation controller. There are still

improvements needed in the code to further control the thrusters power, nothing else in the code

needs further improvement. Overall, the AUV has made significant progress over the past year

and many discoveries were made that would be advantageous for the next group moving

forward.

10

Appendices

from ast import AsyncFunctionDef
from asyncio.windows_events import NULL
from cmath import isclose
from math import trunc
from pickle import FALSE
import sys
from unicodedata import digit
from winreg import KEY_CREATE_SUB_KEY
import pygame
import socket
import time
from pygame.locals import *

def digitToString(number):
if number < 10:
return(' '+str(number))

elif number < 100:
return(' '+str(number))

elif number < 1000:
return(str(number))

else:
return '000'

def draw_Screen():
Control Display
pygame.draw.rect(screen,x_y_grid_color, x_y_grid)
pygame.draw.rect(screen,thrust_grid_color, thrust_grid)
pygame.draw.rect(screen,motor1_grid_color, motor1_grid)
pygame.draw.rect(screen,motor2_grid_color, motor2_grid)
pygame.draw.rect(screen,motor3_grid_color, motor3_grid)
pygame.draw.rect(screen,motor4_grid_color, motor4_grid)

Steering Window
pygame.draw.rect(screen,[255,255,255],pygame.Rect(margin_size-line_size,margin_size-line_size,line_size,bar_height+2*line_size)) # Left
pygame.draw.rect(screen,[255,255,255],pygame.Rect(margin_size-line_size,margin_size-line_size,bar_height+2*line_size,line_size)) # Top
pygame.draw.rect(screen,[255,255,255],pygame.Rect(margin_size-line_size,margin_size+bar_height,bar_height+2*line_size,line_size)) # Bottom
pygame.draw.rect(screen,[255,255,255],pygame.Rect(margin_size+bar_height,margin_size-line_size,line_size,bar_height+2*line_size)) # Right
screen.blit(pygame.font.SysFont(FONT,int(bar_height/10)).render('S',False,(255,255,255)),(margin_size,margin_size))
Thrust Window
pygame.draw.rect(screen,[255,255,255],pygame.Rect(2*margin_size+bar_height-line_size,margin_size-line_size,line_size,bar_height+2*line_size)) # Left
pygame.draw.rect(screen,[255,255,255],pygame.Rect(2*margin_size+bar_height+bar_width,margin_size-line_size,line_size,bar_height+2*line_size)) # Right
pygame.draw.rect(screen,[255,255,255],pygame.Rect(2*margin_size+bar_height-line_size,margin_size-line_size,bar_width+line_size,line_size)) # Top
pygame.draw.rect(screen,[255,255,255],pygame.Rect(2*margin_size+bar_height-line_size,margin_size+bar_height,bar_width+line_size,line_size)) # Bottom
#pygame.draw.rect(screen,[255,255,255],pygame.Rect(2*margin_size+bar_height,margin_size+bar_height/2,bar_width,line_size)) # Center Line
screen.blit(pygame.font.SysFont(FONT,int(bar_height/10)).render('T',False,(255,255,255)),(2*margin_size+margin_size/4+bar_height,margin_size))

#Motor Number 1
pygame.draw.rect(screen,[255,255,255],pygame.Rect(3*margin_size+bar_height+bar_width-line_size,margin_size-line_size,line_size,bar_height/2+2*line_size-margin_size/2)) # Left
pygame.draw.rect(screen,[255,255,255],pygame.Rect(3*margin_size+bar_height+2*bar_width,margin_size-line_size,line_size,bar_height/2+2*line_size-margin_size/2)) # Right
pygame.draw.rect(screen,[255,255,255],pygame.Rect(3*margin_size+bar_height+bar_width-line_size,margin_size-line_size,bar_width+line_size,line_size)) # Top
pygame.draw.rect(screen,[255,255,255],pygame.Rect(3*margin_size+bar_height+bar_width-line_size,margin_size+bar_height/2-margin_size/2,bar_width+line_size,line_size)) # Bottom
screen.blit(pygame.font.SysFont(FONT,int(bar_height/10)).render('1',False,(255,255,255)),(3*margin_size+margin_size/4+bar_height+bar_width,margin_size))
#Motor Number 2
pygame.draw.rect(screen,[255,255,255],pygame.Rect(3*margin_size+bar_height+bar_width-line_size,3*margin_size/2-line_size+bar_height/2,line_size,bar_height/2+2*line_size-margin_size/2)) # Left
pygame.draw.rect(screen,[255,255,255],pygame.Rect(3*margin_size+bar_height+2*bar_width,3*margin_size/2-line_size+bar_height/2,line_size,bar_height/2+2*line_size-margin_size/2)) # Right
pygame.draw.rect(screen,[255,255,255],pygame.Rect(3*margin_size+bar_height+bar_width-line_size,3*margin_size/2-line_size+bar_height/2,bar_width+line_size,line_size)) # Top
pygame.draw.rect(screen,[255,255,255],pygame.Rect(3*margin_size+bar_height+bar_width-line_size,margin_size+bar_height,bar_width+line_size,line_size)) # Bottom
screen.blit(pygame.font.SysFont(FONT,int(bar_height/10)).render('2',False,(255,255,255)),(3*margin_size+margin_size/4+bar_height+bar_width,3*margin_size/2+bar_height/2))
#Motor Number 3
pygame.draw.rect(screen,[255,255,255],pygame.Rect(4*margin_size+bar_height+2*bar_width-line_size,margin_size-line_size,line_size,bar_height/2+2*line_size-margin_size/2)) # Left
pygame.draw.rect(screen,[255,255,255],pygame.Rect(4*margin_size+bar_height+3*bar_width,margin_size-line_size,line_size,bar_height/2+2*line_size-margin_size/2)) # Right
pygame.draw.rect(screen,[255,255,255],pygame.Rect(4*margin_size+bar_height+2*bar_width-line_size,margin_size-line_size,bar_width+line_size,line_size)) # Top
pygame.draw.rect(screen,[255,255,255],pygame.Rect(4*margin_size+bar_height+2*bar_width-line_size,margin_size+bar_height/2-margin_size/2,bar_width+line_size,line_size)) # Bottom
screen.blit(pygame.font.SysFont(FONT,int(bar_height/10)).render('3',False,(255,255,255)),(4*margin_size+margin_size/4+bar_height+2*bar_width,margin_size))
#Motor Number 4
pygame.draw.rect(screen,[255,255,255],pygame.Rect(4*margin_size+bar_height+2*bar_width-line_size,3*margin_size/2-line_size+bar_height/2,line_size,bar_height/2+2*line_size-margin_size/2)) # Left
pygame.draw.rect(screen,[255,255,255],pygame.Rect(4*margin_size+bar_height+3*bar_width,3*margin_size/2-line_size+bar_height/2,line_size,bar_height/2+2*line_size-margin_size/2)) # Right
pygame.draw.rect(screen,[255,255,255],pygame.Rect(4*margin_size+bar_height+2*bar_width-line_size,3*margin_size/2-line_size+bar_height/2,bar_width+line_size,line_size)) # Top
pygame.draw.rect(screen,[255,255,255],pygame.Rect(4*margin_size+bar_height+2*bar_width-line_size,margin_size+bar_height,bar_width+line_size,line_size)) # Bottom
screen.blit(pygame.font.SysFont(FONT,int(bar_height/10)).render('4',False,(255,255,255)),(4*margin_size+margin_size/4+bar_height+2*bar_width,3*margin_size/2+bar_height/2))

s = socket.socket(socket.AF_INET,socket.SOCK_STREAM)
s.bind((socket.gethostname(),1234))
s.listen(1)
clientsocket, address = s.accept()
print(f"Connection from {address} has been established!")
pygame.init()
pygame.display.set_caption('game base')
STATE_CONTROLLER = "XBOX"
FONT = "Times New Roman"
scale_factor = 10
line_size = 1 #Pixels
margin_size = 3 * scale_factor
bar_width = 30 * scale_factor
bar_height = 100 * scale_factor
small_bar_height = (bar_height - 10)*scale_factor
screen_size_x = (5*margin_size+3*bar_width+bar_height)
screen_size_y = (bar_height+2*margin_size)
cursor_size = 2*scale_factor
screen = pygame.display.set_mode((screen_size_x,screen_size_y), 0, 32)
clock = pygame.time.Clock()

pygame.joystick.init()
joystick = [pygame.joystick.Joystick(i) for i in range(pygame.joystick.get_count())]

initalization_value = 0
x_y_grid = pygame.Rect(initalization_value,initalization_value,cursor_size,cursor_size)
x_y_grid_color = (initalization_value,initalization_value,initalization_value)
thrust_grid = pygame.Rect(2*margin_size+bar_height,initalization_value,bar_width,initalization_value)
thrust_grid_color = (initalization_value,initalization_value,initalization_value)
motion = [initalization_value,initalization_value,initalization_value,initalization_value,initalization_value]
dead_zone = 0.025
motor1 = initalization_value
motor1_grid = pygame.Rect(3*margin_size+bar_height+bar_width,initalization_value,bar_width,initalization_value)
motor1_grid_color = (initalization_value,initalization_value,initalization_value)
motor2 = initalization_value
motor2_grid = pygame.Rect(3*margin_size+bar_height+bar_width,initalization_value,bar_width,initalization_value)
motor2_grid_color = (initalization_value,initalization_value,initalization_value)
motor3 = initalization_value
motor3_grid = pygame.Rect(4*margin_size+bar_height+2*bar_width,initalization_value,bar_width,initalization_value)
motor3_grid_color = (initalization_value,initalization_value,initalization_value)
motor4 = initalization_value
motor4_grid = pygame.Rect(4*margin_size+bar_height+2*bar_width,initalization_value,bar_width,initalization_value)
motor4_grid_color = (initalization_value,initalization_value,initalization_value)
thrust_vector = initalization_value
motor_max_update_rate = 60 #hz
time.sleep(2)
#Axis 0: Up (+) Down (-)
#Axis 1: Left (+) Right (-)
#Axis 2: Front (-) Back (+)
PAUSE = False
while True:
screen.fill((0,0,0)) #Wipes Screen
draw_Screen()
pygame.display.update()
if PAUSE:
for i in range(len(motion)):
motion[i] = 0

pygame.display.update()
while PAUSE:
for event in pygame.event.get():
if event.type == KEYDOWN:

11

if event.key == K_p:
PAUSE = False

if STATE_CONTROLLER == "X56":
NULL

elif STATE_CONTROLLER == "PS3":
motion[2] = motion[4]-motion[3]

elif STATE_CONTROLLER == "XBOX":
motion[2] = motion[4]-motion[3]

x_y_grid.x = motion[0]*(bar_height-cursor_size)/2+(margin_size+bar_height/2)-cursor_size/2
x_y_grid.y = motion[1]*(bar_height-cursor_size)/2+(margin_size+bar_height/2)-cursor_size/2
x_y_grid_color = ((motion[2]+1)*255/2,0,abs(motion[2]-1)*255/2)

if motion[2] > 0:
thrust_grid.y = margin_size+bar_height/2-bar_height*motion[2]/2
thrust_grid.height = bar_height*motion[2]/2
thrust_grid_color = (0,0,(motion[2]+1)*150/2+50)

elif motion[2] < 0:
thrust_grid.y = margin_size+bar_height/2
thrust_grid.height = bar_height*abs(motion[2])/2
thrust_grid_color = (abs(motion[2]-1)*150/2+50,0,0)

else:
thrust_grid.y = 0
thrust_grid.height = 0
thrust_grid_color = (127,0,127)

if motor1 > 0.5:
motor1_grid.y = margin_size+bar_height/4-bar_height*(motor1-0.5)/2
motor1_grid.height = bar_height*(motor1-0.5)/2-margin_size/4
motor1_grid_color = (0,0,150*(motor1-0.5)*2+50)

elif motor1 < 0.5:
motor1_grid.y = margin_size+bar_height/4-margin_size/4
motor1_grid.height = bar_height*(0.5 - motor1)/2-margin_size/4
motor1_grid_color = (150*(1-motor1*2)+50,0,0)

else:
motor1_grid.y = 0
motor1_grid.height = 0

if motor2 > 0.5:
motor2_grid.y = 3*margin_size/2+bar_height/2+bar_height/4-bar_height*(motor2-0.5)/2
motor2_grid.height = bar_height*(motor2-0.5)/2-margin_size/2
motor2_grid_color = (0,0,150*(motor2-0.5)*2+50)

elif motor2 < 0.5:
motor2_grid.y = 2*margin_size+bar_height/2+bar_height/4-margin_size/2
motor2_grid.height = bar_height*(0.5 - motor2)/2-margin_size/2
motor2_grid_color = (150*(1-motor2*2)+50,0,0)

else:
motor2_grid.y = 0
motor2_grid.height = 0

if motor3 > 0.5:
motor3_grid.y = margin_size+bar_height/4-bar_height*(motor3-0.5)/2
motor3_grid.height = bar_height*(motor3-0.5)/2-margin_size/4
motor3_grid_color = (0,0,150*(motor3-0.5)*2+50)

elif motor3 < 0.5:
motor3_grid.y = margin_size+bar_height/4-margin_size/4
motor3_grid.height = bar_height*(0.5 - motor3)/2-margin_size/4
motor3_grid_color = (150*(1-motor3*2)+50,0,0)

else:
motor3_grid.y = 0
motor3_grid.height = 0

if motor4 > 0.5:
motor4_grid.y = 3*margin_size/2+bar_height/2+bar_height/4-bar_height*(motor4-0.5)/2
motor4_grid.height = bar_height*(motor4-0.5)/2-margin_size/2
motor4_grid_color = (0,0,150*(motor4-0.5)*2+50)

elif motor4 < 0.5:
motor4_grid.y = 2*margin_size+bar_height/2+bar_height/4-margin_size/2
motor4_grid.height = bar_height*(0.5 - motor4)/2-margin_size/2
motor4_grid_color = (150*(1-motor4*2)+50,0,0)

else:
motor4_grid.y = 0
motor4_grid.height = 0

motor1 = ((motion[0]+1)/2)
motor2 = (abs(motion[0]-1)/2)
motor3 = (abs(motion[1]-1)/2)
motor4 = ((motion[1]+1)/2)
print("Motor 1: ",motor1,"Motor 2: ",motor2,"Motor 3: ",motor3,"Motor 4: ",motor4)
motor1factor = (motion[2]*motor1+1)/2
motor2factor = (motion[2]*motor2+1)/2
motor3factor = (motion[2]*motor3+1)/2
motor4factor = (motion[2]*motor4+1)/2
##print("Motor 1: ",motor1factor,"Motor 2: ",motor2factor,"Motor 3: ",motor3factor,"Motor 4: ",motor4factor)
motor1data = trunc(motor1factor*1000)
motor2data = trunc(motor2factor*1000)
motor3data = trunc(motor3factor*1000)
motor4data = trunc(motor4factor*1000)

#motordata = digitToString(motor1data)+digitToString(motor2data)+digitToString(motor3data)+digitToString(motor4data)

max_transmission_frequency = 60 #hz
clientsocket.send(bytes(str(motor1data),"utf-8"))
time.sleep(1/(max_transmission_frequency*4))
clientsocket.send(bytes(str(motor2data),"utf-8"))
time.sleep(1/(max_transmission_frequency*4))
clientsocket.send(bytes(str(motor3data),"utf-8"))
time.sleep(1/(max_transmission_frequency*4))
clientsocket.send(bytes(str(motor4data),"utf-8"))
time.sleep(1/(max_transmission_frequency*4))
time.sleep(1/motor_max_update_rate)

#clientsocket.send(bytes(motordata,"utf-8"))
#time.sleep(1/(max_transmission_frequency))
#time.sleep(1/motor_max_update_rate)

for event in pygame.event.get():
#if event.type == JOYBUTTONDOWN:
#if event.button == 1: #Eventually this Will be the Kill Drone Button

if event.type == JOYAXISMOTION:
if STATE_CONTROLLER == "X56":
if event.axis == 0:
motion[0] = event.value

if event.axis == 1:
motion[1] = event.value

if event.axis == 4:
motion[2] = event.value

elif STATE_CONTROLLER == "PS3":
#if event.axis == 0: #LEFT/RIGHT Left Stick
#if event.axis == 1: #UP/DOWN Left Stick
if event.axis == 2: #LEFT/RIGHT Right Stick
motion[0] = event.value

if event.axis == 3: #UP/DOWN Right Stick
motion[1] = event.value

if event.axis == 4: #Left Bumper
motion[3] = (event.value+1)/2

if event.axis == 5: #Right Bumper
motion[4] = (event.value+1)/2

elif STATE_CONTROLLER == "XBOX":
#if event.axis == 0: #LEFT/RIGHT Left Stick
#if event.axis == 1: #UP/DOWN Left Stick
if event.axis == 2: #LEFT/RIGHT Right Stick
motion[0] = event.value

if event.axis == 3: #UP/DOWN Right Stick
motion[1] = event.value

if event.axis == 4: #Left Bumper
motion[3] = (event.value+1)/2

12

if event.axis == 5: #Right Bumper
motion[4] = (event.value+1)/2

if event.type == QUIT:
pygame.quit()
sys.exit()

if event.type == KEYDOWN:
if event.key == K_k:
if STATE_CONTROLLER == "X56":
STATE_CONTROLLER == "PS3"
print("Switching to Controller")

elif STATE_CONTROLLER == "PS3":
STATE_CONTROLLER == "XBOX"
print("Switching to Joystick")

elif STATE_CONTROLLER == "XBOX":
STATE_CONTROLLER == "X56"
print("Switching to Joystick")

if event.key == K_p:
PAUSE = True

if event.key == K_ESCAPE:
pygame.quit()
sys.exit()
socket.close()

for i in range(len(motion)):
if abs(motion[i]) < dead_zone:

motion[i] = 0
elif abs(motion[i]) > 1 - dead_zone:
if motion[i] > 0:
motion[i] = 1

else:
motion[i] = -1

elif abs(motion[i]) < dead_zone-1:
if motion[i] > 0:
motion[i] = 1

else:
motion[i] = -1

clock.tick(60)

A1.1: Python code for the AUV Basestation Control System

13

import time
import math
import socket
import RPi.GPIO as GPIO
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
ipv4_default = '10.161.80.254'
ipv4 = input('What what is the IPv4 Address of the Local Host: ')
if ipv4=='localhost':
s.connect((socket.gethostname(),1234))

else:
s.connect((ipv4,1234))

print('Connection Established with '+str(ipv4)+'!')
def thrustclamp(thrustvalue): #Clamps values between -1 and 1
if thrustvalue>1:
return 1

elif thrustvalue<-1:
return -1

return thrustvalue
pwmFrequency = 50.75 #hz
def thrustToDuty(thrustvalue):
thrustvalue=(thrustclamp(thrustvalue)+1)/2
return thrustvalue*5+4.5

GPIO.setmode(GPIO.BOARD)
motor1_gpio = 11 #pin
motor2_gpio = 13 #pin
motor3_gpio = 15 #pin
motor4_gpio = 16 #pin
startup_duty_cycle = 7 #%
#motor_max_update_rate = 16 #hz
GPIO.setup(motor1_gpio, GPIO.OUT)
GPIO.setup(motor2_gpio, GPIO.OUT)
GPIO.setup(motor3_gpio, GPIO.OUT)
GPIO.setup(motor4_gpio, GPIO.OUT)
motor1 = GPIO.PWM(motor1_gpio, pwmFrequency)
motor2 = GPIO.PWM(motor2_gpio, pwmFrequency)
motor3 = GPIO.PWM(motor3_gpio, pwmFrequency)
motor4 = GPIO.PWM(motor4_gpio, pwmFrequency)
motor1.start(startup_duty_cycle)
motor2.start(startup_duty_cycle)
motor3.start(startup_duty_cycle)
motor4.start(startup_duty_cycle)
motor_statup_period = 2 #seconds
print('Motors Initizlizing! Waiting '+str(motor_statup_period)+'second(s)!')
time.sleep(motor_statup_period)
print('Motor Startup Completed Receiving Signals from Remote.')
max_transmission_frequency = 25
motor_max_update_rate = 400
try:
while True:
s.send(bytes(str('1'),'utf-8'))
motor1data = int(s.recv(32).decode("utf-8"))/1000*2-1
time.sleep(1/(motor_max_update_rate*4))
motor2data = int(s.recv(32).decode("utf-8"))/1000*2-1
time.sleep(1/(motor_max_update_rate*4))
motor3data = int(s.recv(32).decode("utf-8"))/1000*2-1
time.sleep(1/(motor_max_update_rate*4))
motor4data = int(s.recv(32).decode("utf-8"))/1000*2-1
time.sleep(1/(motor_max_update_rate*4))
#print("Motor 1: ",motor1data,"Motor 2: ",motor2data,"Motor 3: ",motor3data,"Motor 4: ",motor4data)
motor1.ChangeDutyCycle(thrustToDuty(motor1data))
motor2.ChangeDutyCycle(thrustToDuty(motor2data))
motor3.ChangeDutyCycle(thrustToDuty(motor3data))
motor4.ChangeDutyCycle(thrustToDuty(motor4data))
#rawmotordata = s.recv(32).decode("utf-8")
#print(rawmotordata)
#motordata = int(rawmotordata)
#print(motordata)
#motor4 = int(motordata % 1000)
#motor3 = int((motordata % 1000000 - motor4)/1000)
#motor2 = int((motordata % 1000000000 - (motor3+motor4))/1000000)
#motor1 = int((motordata % 1000000000000 - (motor4+motor2+motor3))/1000000000)
#print("Motor 1: ",motor1,"Motor 2: ",motor2,"Motor 3: ",motor3,"Motor 4: ",motor4)
#thrust4 = thrustclamp((motor4-500)/1000)
#thrust3 = thrustclamp((motor3-500)/1000)
#thrust2 = thrustclamp((motor2-500)/1000)
#thrust1 = thrustclamp((motor1-500)/1000)
#print("Motor 1: ",thrust1,"Motor 2: ",thrust2,"Motor 3: ",thrust3,"Motor 4: ",thrust4)
#motor1.ChangeDutyCycle(thrustToDuty(thrust1))
#motor2.ChangeDutyCycle(thrustToDuty(thrust2))
#motor3.ChangeDutyCycle(thrustToDuty(thrust3))
#motor4.ChangeDutyCycle(thrustToDuty(thrust4))
time.sleep(1/(max_transmission_frequency))

except KeyboardInterrupt:
pass

motor1.stop()
motor2.stop()
motor3.stop()
motor4.stop()
GPIO.cleanup()
s.shutdown(socket.SHUT_RDWR)
s.close()

A1.2: Python code for the AUV Drone Control System

14

A2.1: Project Budget

A3.1: GANTT Chart for MAE 434W Discussions and Project Work

15

A3.2: GANTT Chart for MAE 435 Project Work

16

References

[1] Busquets, J., Busquets, J. V., Tudela, D., Perez, F., Busquets-Carbonell, J., Barbera, A.,
Rodriguez, C., Garcia, A. J., Gilabert J., 2012, “Low-cost AUV based on Arduino open source
microcontroller board for oceanographic research applications in a collaborative long term
deployment missions and suitable for combining with an USV as autonomous automatic
recharging platform,” Proceedings of the IEEE Symposium on Autonomous Underwater
Vehicles, Southampton, UK, 24-27 September, 2012. https://doi.org/10.1109/AUV.2012.6380720

[2] Xiang X., Yu C., Niu Z., Zhang Q., 2016, “Subsea Cable Tracking by Autonomous
Underwater Vehicle with Magnetic Sensing Guidance,” Sensors 16(3): 1-23.
DOI:10.3390/s16081335

[3] Khodaryari, M. H., Bolachain, S., 2015, “Modeling and control of autonomous underwater
vehicle (AUV) in heading and depth attitude via self-adaptive fuzzy PID controller,” ASME J Mar.
Technol. 20(3), pp 559-578. DOI:10.1007/s00773-015-0312-7

[4] Li, J.-H., Lee, M.-J., Park, S.-H., Kim, J.-G., 2012, “Real time path planning for a class of
torpedo-type AUVs in unknown environment,” Proceedings of the IEEE Symposium on
Autonomous Underwater Vehicles, Southampton, UK, 24-27 September, 2012.
https://doi.org/10.1109/AUV.2012.6380728

[5] Sahoo, A., Dwivdey, S. K., Robi, P.S., 2019, “Advancements in the field of underwater
autonomous vehicles”, Ocean Engineering 18: pp 145-160, April 3, 2019.
https://doi.org/10.1016/j.oceaneng.2019.04.011

17

