
MAE 434W/435 Capstone Project:

Development of An Underwater Autonomous Vehicle

Faculty Advisors:

Dr. Krishnanand Kaipa, Dr. Cong Wei

Project Team Members:

William Buhrig, Justin Day, Nick Eoff, Tom Herlihy, Matthew Laverty, Colin Sizemore

1

Table of Contents

Table of Contents...2
List of Figures.. 2
Abstract..3
Introduction..3
Methods...4

Completed Methods...4
Proposed Methods...5

Preliminary Results..6
Discussion... 8
Appendices..9
References.. 12

List of Figures

A1.1: Python code for the AUV Basestation Control System.. 10
A1.2: Python code for the AUV Drone Control System..11
A2.1: Project Budget..12
A3.1: GANTT Chart for MAE 434W Discussions and Project Work.. 12
A3.2: GANTT Chart for MAE 435 Project Work...13

2

Abstract

This report will be about the MAE 434W/435 senior design project titled “Development

of an Underwater Autonomous Vehicle.” This project deals with an existing underwater

autonomous vehicle, or AUV that is 15.5 inches high, and 5 inches wide. It is propelled by four

thrusters powered by brushless DC motors and controlled by eight potentiometers. The scope of

the project is to test and modify the existing AUV design. Initial tests were done to ensure that

the motors operate correctly and to determine where water infiltration occurs. Completed results

show that the motors are fully functional. However, the design will be modified so that the AUV

will be operated by a single PlayStation 3 controller. A small amount of water infiltrates the

AUV when it is submerged in water. Consequently, the design will be modified to create a

completely waterproof design. Additional testing and modifications will be performed to allow

the AUV to operate untethered and to achieve neutral buoyancy.

Introduction

The automation of technology has been of noted importance to engineers. Automated

technologies have been utilized in many industries, for example in the automotive, aviation, and

manufacturing. Underwater exploration has utilized automation as well through the use of

autonomous underwater vehicles, or AUVs. An example of a use case for autonomous

underwater vehicles is for “exploring the diverse oceanography of Spain” [1]. Another example

of the use of autonomous underwater vehicles was “monitoring undersea cables for damage by

using the electromagnetic field from the cables to direct the AUV” [2]. Controlling AUVs also

greatly varies between models, as one reference showed “the use of a fuzzy PID controllers in

AUVs have been adopted widely by the industry” [3]. Another design for autonomous control is

“combining sonar and real-time path planning to allow the AUV to operate in unknown

3

environments” [4]. The future of AUV technology has been foretold to be “RaspberryPi based

computer navigation systems, energy harvesting, and high-speed underwater communication”

[5]. Thus, the need for a low-cost AUV has been established.

The purpose of the project is to find a low-cost solution to the development of

autonomous underwater vehicles. Projects like Bluefin for example “utilize sophisticated

navigation, control, and power systems” which are costly to develop [5]. If one is lost the time to

build another would take a long period of time. Utilizing a low-cost design would allow for more

AUVs to be utilized in applications like “search and rescue, salvage operations, oceanographic

mapping” [5].

Methods

Completed Methods

To provide a visual representation of the new AUV control system, a python-based

interface was developed. The system takes input from a PlayStation 3 (Sony Interactive

Entertainment, San Mateo, CA) controller and depicts the outputs in a visual format. The output

for the thrusters is represented by a vertical bar whose height increases as thruster output

increases. The position of the front of the drone is represented by a circular dot inside of a

square, with the dot moving inside of the square based upon control input. Drone depth is also

represented in a similar manner to thruster output, with a vertical bar whose height decreases as

depth decreases. The code for this method has been included in Appendix A.

To ensure the AUV is appropriately ballasted two approaches were taken. The first was a

theoretical calculation based on the internal volume of air inside the AUV and the volume of the

4

AUV’s resin hull and applying those to the buoyant force formula: . This would
𝑉
𝑆𝑢𝑏

𝑉
𝑇𝑜𝑡𝑎𝑙

=
ρ
𝑎𝑣𝑔,𝑏𝑜𝑑𝑦

ρ
𝑓𝑙𝑢𝑖𝑑

be compared to the density of water, which is 997 kilograms per meter cubed, and the resulting

displacement of the AUV came out to five and a half pounds of water. This simple calculation

will be compared to a computer scan of the AUV to verify its displacement. Water testing was

also performed, which involved immersing it in forty gallons of water in a closed environment.

When unladen the AUV would not sink, however when five pounds of lead diving weight and

the approximately three pound battery were loaded into the AUV it sank reliably.

Proposed Methods

To address problems with potential water infiltration both CAD analysis and physical testing will

be used. The previously mentioned Inventor files will be used to analyze how the O-ring water seal

between the nose and main sections of the drone prevents water from flowing inside the drone. The

physical testing will involve immersing the front end of the AUV under a depth of water such that the

O-ring will be submerged, and the section will remain submerged for up to an hour, which periodically

checks to see if water has bypassed the O-ring. If the O-ring fails it will be replaced with a more fitting

O-ring based on its dimensions and the elasticity of the material the O-ring is made of, for example 3M

silicone or natural latex rubber. An additional measure to improve this seal is to add a Latex gasket on

both sides of the rubber gasket to improve its elastic properties.

To help guide the design process and parameters for the AUV, several standards will be

utilized. The American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel

Code will be utilized to ensure the AUV does not fail due to water pressures which increase with

depth. ANSI/ABYC E-13-2022 will be relevant if lithium-ion batteries are used to power the

drone if a change of battery type is decided for better buoyancy or otherwise. While currently

5

under development, ISO/AWI 20682 Autonomous Underwater Vehicles - Risk and Reliability

will give additional guidance on general testing the electronic systems of the AUV. Finally, to

provide guidance for waterproofing testing, the Ingress Protection Code (IP Code) will be

utilized with the drone needing to be of an IP Code rating of 9 for zero water infiltration.

Due to the discovery of the hull slowly deteriorating when immersed in water, the AUV

will be coated with a protective layer of sealant to prevent material deterioration when

submerged in water. This material type that we have chosen is an Epoxy coating that will be

applied from a pneumatic spray gun thinned by a lacquer. The specific formula of resin will be

chosen by two criteria: the coating must properly bond to the acrylic hull without compromising

its structural integrity, additionally the layer must be stable under saline, brackish, and freshwater

conditions.

To finalize the control system loop, the local compute unit on the drone still needs to be

extensively coded to be capable of receiving the serial connection from the control cable and

translate those commands into actions done by the drone. The current goal is to get the drone to

act as a RC drone that can then be abstracted to generalized commands, thereby easing the

control system into its final state over time.

Preliminary Results

Waterproofing the AUV is still one of the major focuses for this project. In all three of the

tests that were conducted water leaked into the craft. On the second round of testing it was

determined that a leak point for the craft was coming from the top section where the AUV can be

opened into two separate pieces. It was determined that the O-ring that had been placed to seal

the two sections was not creating a sufficient seal. To eliminate this issue different O-rings that

were made from a more mailable and thicker material were ordered to take the place of the

6

existing o-ring to create a better formed seal around the opening. However, when the O-rings

came from the manufacturer, it was found that they did not fit the craft. Dr. Kaipa suggested that

sections from latex gloves could be placed in conjunction with the existing O-ring to create a

seal. This would ensure that when the top section of the craft is screwed down onto the body that

the latex would be squeezed tightly enough between the two pieces to create a waterproof seal.

Since then, latex material has been acquired and further waterproofing tests have been planned.

While conducting the third test on craft a new issue regarding the resin material the craft

was discovered. The resin that the craft was made from felt spongey as if it had absorbed water.

After running one of our fingernails around the thicker portion on the bottom of the craft a

considerable amount of resin was able to be scraped off the craft leading to the conclusion that

the material was deteriorating from being placed in water. To combat this issue, it was decided

that a water proof epoxy would be used to coat the shell, completely sealing the shell from

outside water. In this third test it was also observed that air bubbles had permeated out from the

gaskets on the motor mounts. Seeing these air bubbles raised questions regarding the seal around

the mounts so it was decided that when the shell is coated with the epoxy, the mounts themselves

will also be coated to eliminate them as a possible leak point.

The control system as of this point has not been fully implemented; however, we have

been able to program the foundations to the remote control system in Python. This foundation is

a telecommunications console, running on a laptop, that allows any Human Interface Device,

Flight-Stick or Wireless Controller, to be used as an input. Once this input signal is received the

program will translate the input signal to a corresponding output on the display and eventually to

a serial link between the remote control station and the drone.

7

Additionally, to allow the drone to operate, a Raspberry Pi (Raspberry Pi Foundation,

Caldecote, UK) computer will receive commands via a control cable. The computer will take the

signals generated from the control system interface, a laptop computer, via a human interface

device, parse the signal, then send it to the AUV which will in turn receive the signal and move

according to the user input. These results will serve as a foundation for making the control

systems of the drone architecture capable of supporting a radio interface device for future

progress.

Discussion

As the drone has developed there have been major improvements to the control systems

of the drone. The control system has gone from eight different potentiometers to a human

interface device, PlayStation 3 or HOTAS controller, and a remote computer system to local

computation device to the drone. The water resistance of the drone has been improved; however,

the drone still has a leakage issue through the o-ring and or the motor mounts. To improve the

o-ring section we will in addition to the new o-rings an additional Latex gasket will be added to

the seal. For the motor mounts the gaskets that are currently installed will be replaced with a

silicone caulking to remove possible ingress locations of water. In addition to these modifications

to make the AUV neutrally buoyant lead weights have been obtained which will be distributed

throughout the hull of the drone.

8

Appendices

from ast import AsyncFunctionDef
from asyncio.windows_events import NULL
from cmath import isclose
from pickle import FALSE
import sys
from winreg import KEY_CREATE_SUB_KEY
import pygame
import serial
from pygame.locals import *

def draw_Screen():
Control Display
pygame.draw.rect(screen,x_y_grid_color, x_y_grid)
pygame.draw.rect(screen,thrust_grid_color, thrust_grid)
pygame.draw.rect(screen,motor1_grid_color, motor1_grid)
pygame.draw.rect(screen,motor2_grid_color, motor2_grid)
pygame.draw.rect(screen,motor3_grid_color, motor3_grid)
pygame.draw.rect(screen,motor4_grid_color, motor4_grid)

Steering Window
pygame.draw.rect(screen,[255,255,255],pygame.Rect(margin_size-line_size,margin_size-line_size,line_size,bar_height+2*line_size)) # Left
pygame.draw.rect(screen,[255,255,255],pygame.Rect(margin_size-line_size,margin_size-line_size,bar_height+2*line_size,line_size)) # Top
pygame.draw.rect(screen,[255,255,255],pygame.Rect(margin_size-line_size,margin_size+bar_height,bar_height+2*line_size,line_size)) # Bottom
pygame.draw.rect(screen,[255,255,255],pygame.Rect(margin_size+bar_height,margin_size-line_size,line_size,bar_height+2*line_size)) # Right
screen.blit(pygame.font.SysFont(FONT,int(bar_height/10)).render('S',False,(255,255,255)),(margin_size,margin_size))
Thrust Window
pygame.draw.rect(screen,[255,255,255],pygame.Rect(2*margin_size+bar_height-line_size,margin_size-line_size,line_size,bar_height+2*line_size)) # Left
pygame.draw.rect(screen,[255,255,255],pygame.Rect(2*margin_size+bar_height+bar_width,margin_size-line_size,line_size,bar_height+2*line_size)) # Right
pygame.draw.rect(screen,[255,255,255],pygame.Rect(2*margin_size+bar_height-line_size,margin_size-line_size,bar_width+line_size,line_size)) # Top
pygame.draw.rect(screen,[255,255,255],pygame.Rect(2*margin_size+bar_height-line_size,margin_size+bar_height,bar_width+line_size,line_size)) # Bottom
#pygame.draw.rect(screen,[255,255,255],pygame.Rect(2*margin_size+bar_height,margin_size+bar_height/2,bar_width,line_size)) # Center Line
screen.blit(pygame.font.SysFont(FONT,int(bar_height/10)).render('T',False,(255,255,255)),(2*margin_size+margin_size/4+bar_height,margin_size))

#Motor Number 1
pygame.draw.rect(screen,[255,255,255],pygame.Rect(3*margin_size+bar_height+bar_width-line_size,margin_size-line_size,line_size,bar_height/2+2*line_size-margin_size/2)) # Left
pygame.draw.rect(screen,[255,255,255],pygame.Rect(3*margin_size+bar_height+2*bar_width,margin_size-line_size,line_size,bar_height/2+2*line_size-margin_size/2)) # Right
pygame.draw.rect(screen,[255,255,255],pygame.Rect(3*margin_size+bar_height+bar_width-line_size,margin_size-line_size,bar_width+line_size,line_size)) # Top
pygame.draw.rect(screen,[255,255,255],pygame.Rect(3*margin_size+bar_height+bar_width-line_size,margin_size+bar_height/2-margin_size/2,bar_width+line_size,line_size)) # Bottom
screen.blit(pygame.font.SysFont(FONT,int(bar_height/10)).render('1',False,(255,255,255)),(3*margin_size+margin_size/4+bar_height+bar_width,margin_size))
#Motor Number 2
pygame.draw.rect(screen,[255,255,255],pygame.Rect(3*margin_size+bar_height+bar_width-line_size,3*margin_size/2-line_size+bar_height/2,line_size,bar_height/2+2*line_size-margin_size/2)) # Left
pygame.draw.rect(screen,[255,255,255],pygame.Rect(3*margin_size+bar_height+2*bar_width,3*margin_size/2-line_size+bar_height/2,line_size,bar_height/2+2*line_size-margin_size/2)) # Right
pygame.draw.rect(screen,[255,255,255],pygame.Rect(3*margin_size+bar_height+bar_width-line_size,3*margin_size/2-line_size+bar_height/2,bar_width+line_size,line_size)) # Top
pygame.draw.rect(screen,[255,255,255],pygame.Rect(3*margin_size+bar_height+bar_width-line_size,margin_size+bar_height,bar_width+line_size,line_size)) # Bottom
screen.blit(pygame.font.SysFont(FONT,int(bar_height/10)).render('2',False,(255,255,255)),(3*margin_size+margin_size/4+bar_height+bar_width,3*margin_size/2+bar_height/2))
#Motor Number 3
pygame.draw.rect(screen,[255,255,255],pygame.Rect(4*margin_size+bar_height+2*bar_width-line_size,margin_size-line_size,line_size,bar_height/2+2*line_size-margin_size/2)) # Left
pygame.draw.rect(screen,[255,255,255],pygame.Rect(4*margin_size+bar_height+3*bar_width,margin_size-line_size,line_size,bar_height/2+2*line_size-margin_size/2)) # Right
pygame.draw.rect(screen,[255,255,255],pygame.Rect(4*margin_size+bar_height+2*bar_width-line_size,margin_size-line_size,bar_width+line_size,line_size)) # Top
pygame.draw.rect(screen,[255,255,255],pygame.Rect(4*margin_size+bar_height+2*bar_width-line_size,margin_size+bar_height/2-margin_size/2,bar_width+line_size,line_size)) # Bottom
screen.blit(pygame.font.SysFont(FONT,int(bar_height/10)).render('3',False,(255,255,255)),(4*margin_size+margin_size/4+bar_height+2*bar_width,margin_size))
#Motor Number 4
pygame.draw.rect(screen,[255,255,255],pygame.Rect(4*margin_size+bar_height+2*bar_width-line_size,3*margin_size/2-line_size+bar_height/2,line_size,bar_height/2+2*line_size-margin_size/2)) # Left
pygame.draw.rect(screen,[255,255,255],pygame.Rect(4*margin_size+bar_height+3*bar_width,3*margin_size/2-line_size+bar_height/2,line_size,bar_height/2+2*line_size-margin_size/2)) # Right
pygame.draw.rect(screen,[255,255,255],pygame.Rect(4*margin_size+bar_height+2*bar_width-line_size,3*margin_size/2-line_size+bar_height/2,bar_width+line_size,line_size)) # Top
pygame.draw.rect(screen,[255,255,255],pygame.Rect(4*margin_size+bar_height+2*bar_width-line_size,margin_size+bar_height,bar_width+line_size,line_size)) # Bottom
screen.blit(pygame.font.SysFont(FONT,int(bar_height/10)).render('4',False,(255,255,255)),(4*margin_size+margin_size/4+bar_height+2*bar_width,3*margin_size/2+bar_height/2))

#serialconnection = serial.Serial('COM7',9600)
pygame.init()
pygame.display.set_caption('game base')
STATE_CONTROLLER = "PS3"
FONT = "Times New Roman"
scale_factor = 3
line_size = 1 #Pixels
margin_size = 3 * scale_factor
bar_width = 30 * scale_factor
bar_height = 100 * scale_factor
small_bar_height = (bar_height - 10)*scale_factor
screen_size_x = (5*margin_size+3*bar_width+bar_height)
screen_size_y = (bar_height+2*margin_size)
cursor_size = 2*scale_factor
screen = pygame.display.set_mode((screen_size_x,screen_size_y), 0, 32)
clock = pygame.time.Clock()

pygame.joystick.init()
joystick = [pygame.joystick.Joystick(i) for i in range(pygame.joystick.get_count())]

initalization_value = 0
x_y_grid = pygame.Rect(initalization_value,initalization_value,cursor_size,cursor_size)
x_y_grid_color = (initalization_value,initalization_value,initalization_value)
thrust_grid = pygame.Rect(2*margin_size+bar_height,initalization_value,bar_width,initalization_value)
thrust_grid_color = (initalization_value,initalization_value,initalization_value)
motion = [initalization_value,initalization_value,initalization_value,initalization_value,initalization_value]
dead_zone = 0.025
motor1 = initalization_value
motor1_grid = pygame.Rect(3*margin_size+bar_height+bar_width,initalization_value,bar_width,initalization_value)
motor1_grid_color = (initalization_value,initalization_value,initalization_value)
motor2 = initalization_value
motor2_grid = pygame.Rect(3*margin_size+bar_height+bar_width,initalization_value,bar_width,initalization_value)
motor2_grid_color = (initalization_value,initalization_value,initalization_value)
motor3 = initalization_value
motor3_grid = pygame.Rect(4*margin_size+bar_height+2*bar_width,initalization_value,bar_width,initalization_value)
motor3_grid_color = (initalization_value,initalization_value,initalization_value)
motor4 = initalization_value
motor4_grid = pygame.Rect(4*margin_size+bar_height+2*bar_width,initalization_value,bar_width,initalization_value)
motor4_grid_color = (initalization_value,initalization_value,initalization_value)
thrust_vector = initalization_value
#Axis 0: Up (+) Down (-)
#Axis 1: Left (+) Right (-)
#Axis 2: Front (-) Back (+)
PAUSE = False
port = serial.Serial()
port.port = "COM3"
port.baudrate = 9600
while True:
screen.fill((0,0,0)) #Wipes Screen
draw_Screen()
pygame.display.update()
if PAUSE:
for i in range(len(motion)):
motion[i] = 0

pygame.display.update()
while PAUSE:
for event in pygame.event.get():
if event.type == KEYDOWN:
if event.key == K_p:
PAUSE = False

if port.is_open == False:
port.open()

print(port.readline())
#data = serialconnection.readline().decode().strip()
#print(data)
if STATE_CONTROLLER == "X56":
NULL

elif STATE_CONTROLLER == "PS3":
motion[2] = motion[4]-motion[3]

x_y_grid.x = motion[0]*(bar_height-cursor_size)/2+(margin_size+bar_height/2)-cursor_size/2
x_y_grid.y = motion[1]*(bar_height-cursor_size)/2+(margin_size+bar_height/2)-cursor_size/2
x_y_grid_color = ((motion[2]+1)*255/2,0,abs(motion[2]-1)*255/2)

9

if motion[2] > 0:
thrust_grid.y = margin_size+bar_height/2-bar_height*motion[2]/2
thrust_grid.height = bar_height*motion[2]/2
thrust_grid_color = (0,0,(motion[2]+1)*150/2+50)

elif motion[2] < 0:
thrust_grid.y = margin_size+bar_height/2
thrust_grid.height = bar_height*abs(motion[2])/2
thrust_grid_color = (abs(motion[2]-1)*150/2+50,0,0)

else:
thrust_grid.y = 0
thrust_grid.height = 0
thrust_grid_color = (127,0,127)

if motor1 > 0.5:
motor1_grid.y = margin_size+bar_height/4-bar_height*(motor1-0.5)/2
motor1_grid.height = bar_height*(motor1-0.5)/2-margin_size/4
motor1_grid_color = (0,0,150*(motor1-0.5)*2+50)

elif motor1 < 0.5:
motor1_grid.y = margin_size+bar_height/4-margin_size/4
motor1_grid.height = bar_height*(0.5 - motor1)/2-margin_size/4
motor1_grid_color = (150*(1-motor1*2)+50,0,0)

else:
motor1_grid.y = 0
motor1_grid.height = 0

if motor2 > 0.5:
motor2_grid.y = 3*margin_size/2+bar_height/2+bar_height/4-bar_height*(motor2-0.5)/2
motor2_grid.height = bar_height*(motor2-0.5)/2-margin_size/2
motor2_grid_color = (0,0,150*(motor2-0.5)*2+50)

elif motor2 < 0.5:
motor2_grid.y = 2*margin_size+bar_height/2+bar_height/4-margin_size/2
motor2_grid.height = bar_height*(0.5 - motor2)/2-margin_size/2
motor2_grid_color = (150*(1-motor2*2)+50,0,0)

else:
motor2_grid.y = 0
motor2_grid.height = 0

if motor3 > 0.5:
motor3_grid.y = margin_size+bar_height/4-bar_height*(motor3-0.5)/2
motor3_grid.height = bar_height*(motor3-0.5)/2-margin_size/4
motor3_grid_color = (0,0,150*(motor3-0.5)*2+50)

elif motor3 < 0.5:
motor3_grid.y = margin_size+bar_height/4-margin_size/4
motor3_grid.height = bar_height*(0.5 - motor3)/2-margin_size/4
motor3_grid_color = (150*(1-motor3*2)+50,0,0)

else:
motor3_grid.y = 0
motor3_grid.height = 0

if motor4 > 0.5:
motor4_grid.y = 3*margin_size/2+bar_height/2+bar_height/4-bar_height*(motor4-0.5)/2
motor4_grid.height = bar_height*(motor4-0.5)/2-margin_size/2
motor4_grid_color = (0,0,150*(motor4-0.5)*2+50)

elif motor4 < 0.5:
motor4_grid.y = 2*margin_size+bar_height/2+bar_height/4-margin_size/2
motor4_grid.height = bar_height*(0.5 - motor4)/2-margin_size/2
motor4_grid_color = (150*(1-motor4*2)+50,0,0)

else:
motor4_grid.y = 0
motor4_grid.height = 0

motor1 = ((motion[0]+1)/2)
motor2 = (abs(motion[0]-1)/2)
motor3 = (abs(motion[1]-1)/2)
motor4 = ((motion[1]+1)/2)
#print("Motor 1: ",motor1,"Motor 2: ",motor2,"Motor 3: ",motor3,"Motor 4: ",motor4)

for event in pygame.event.get():
#if event.type == JOYBUTTONDOWN:
#if event.button == 1: #Eventually this Will be the Kill Drone Button

if event.type == JOYAXISMOTION:
if STATE_CONTROLLER == "X56":
if event.axis == 0:
motion[0] = event.value

if event.axis == 1:
motion[1] = event.value

if event.axis == 4:
motion[2] = event.value

elif STATE_CONTROLLER == "PS3":
#if event.axis == 0: #LEFT/RIGHT Left Stick
#if event.axis == 1: #UP/DOWN Left Stick
if event.axis == 2: #LEFT/RIGHT Right Stick
motion[0] = event.value

if event.axis == 3: #UP/DOWN Right Stick
motion[1] = event.value

if event.axis == 4: #Left Bumper
motion[3] = (event.value+1)/2

if event.axis == 5: #Right Bumper
motion[4] = (event.value+1)/2

if event.type == QUIT:
pygame.quit()
sys.exit()

if event.type == KEYDOWN:
if event.key == K_k:
if STATE_CONTROLLER == "X56":
STATE_CONTROLLER == "PS3"
print("Switching to Controller")

elif STATE_CONTROLLER == "PS3":
STATE_CONTROLLER == "X56"
print("Switching to Joystick")

if event.key == K_p:
PAUSE = True

if event.key == K_ESCAPE:
pygame.quit()
sys.exit()

for i in range(len(motion)):
if abs(motion[i]) < dead_zone:

motion[i] = 0
elif abs(motion[i]) > 1 - dead_zone:
if motion[i] > 0:
motion[i] = 1

else:
motion[i] = -1

elif abs(motion[i]) < dead_zone-1:
if motion[i] > 0:
motion[i] = 1

else:
motion[i] = -1

port.close()
clock.tick(60)

A1.1: Python code for the AUV Basestation Control System

10

import time
import RPi.GPIO as GPIO
#wiringpi.wiringPiSetup()
#serial = wiringpi.serialOpen('/dev/ttyAMA0',9600)
GPIO.setmode(GPIO.BOARD)
motor1_gpio = 4 #pin
motor2_gpio = 13 #pin
motor3_gpio = 14 #pin
motor4_gpio = 27 #pin
startup_duty_cycle = 0 #%
startup_motor_PWM_Hz = 667 #hz 661-672 are Zero thrust
motor_duty_cycle = 10 #%
motor_max_update_rate = 400 #hz
GPIO.setup(motor1_gpio, GPIO.OUT)
GPIO.setup(motor2_gpio, GPIO.OUT)
GPIO.setup(motor3_gpio, GPIO.OUT)
GPIO.setup(motor4_gpio, GPIO.OUT)
motor1 = GPIO.PWM(motor1_gpio, startup_motor_PWM_Hz)
motor2 = GPIO.PWM(motor2_gpio, motor_PWM_Hz)
motor3 = GPIO.PWM(motor3_gpio, motor_PWM_Hz)
motor4 = GPIO.PWM(motor4_gpio, motor_PWM_Hz)
motor1.start(startup_duty_cycle)
motor2.start(startup_duty_cycle)
motor3.start(startup_duty_cycle)
motor4.start(startup_duty_cycle)
try:
motor1.ChangeDutyCycle(motor_duty_cycle)
while True:
for freq in range(667, 640, -1):
print("Motor 1 at ", freq, "Hz")
motor1.ChangeFrequency(freq)
time.sleep(1.0/motor_max_update_rate)

except KeyboardInterrupt:
pass

motor1.stop()
motor2.stop()
motor3.stop()
motor4.stop()
GPIO.cleanup()

A1.2: Python code for the AUV Drone Control System

11

A2.1: Project Budget

A3.1: GANTT Chart for MAE 434W Discussions and Project Work

12

A3.2: GANTT Chart for MAE 435 Project Work

13

References

[1] Busquets, J., Busquets, J. V., Tudela, D., Perez, F., Busquets-Carbonell, J., Barbera, A.,
Rodriguez, C., Garcia, A. J., Gilabert J., 2012, “Low-cost AUV based on Arduino open source
microcontroller board for oceanographic research applications in a collaborative long term
deployment missions and suitable for combining with an USV as autonomous automatic
recharging platform,” Proceedings of the IEEE Symposium on Autonomous Underwater
Vehicles, Southampton, UK, 24-27 September, 2012. https://doi.org/10.1109/AUV.2012.6380720

[2] Xiang X., Yu C., Niu Z., Zhang Q., 2016, “Subsea Cable Tracking by Autonomous
Underwater Vehicle with Magnetic Sensing Guidance,” Sensors 16(3): 1-23.
DOI:10.3390/s16081335

[3] Khodaryari, M. H., Bolachain, S., 2015, “Modeling and control of autonomous underwater
vehicle (AUV) in heading and depth attitude via self-adaptive fuzzy PID controller,” ASME J Mar.
Technol. 20(3), pp 559-578. DOI:10.1007/s00773-015-0312-7

[4] Li, J.-H., Lee, M.-J., Park, S.-H., Kim, J.-G., 2012, “Real time path planning for a class of
torpedo-type AUVs in unknown environment,” Proceedings of the IEEE Symposium on
Autonomous Underwater Vehicles, Southampton, UK, 24-27 September, 2012.
https://doi.org/10.1109/AUV.2012.6380728

[5] Sahoo, A., Dwivdey, S. K., Robi, P.S., 2019, “Advancements in the field of underwater
autonomous vehicles”, Ocean Engineering 18: pp 145-160, April 3, 2019.
https://doi.org/10.1016/j.oceaneng.2019.04.011

14

