Meeting #2 (January 31)

- Construction by Sea Perch method: PVC pipes
- Design proposals
 - Quadcopter design using tilt sensor
 - Torpedo shaped design
- Methods for making vehicle unmanned
 - o Sonar
 - Light sensors
 - Probably won't work in cloudy water
 - o GPS
 - We would need to create GPS signal
 - Might annoy local government agencies like the Naval Station or the FCC but we might still be able to work around this
- Where to test
 - o Pool?
 - o River?
- Programming: Arduino (most of us have experience using this from Electromechanical Systems class)
- Modeling software:
 - SOLIDWORKS
 - Justin has experience using SOLIDWORKS and thinks it will be better than Inventor for our project, may be difficult to access without paying \$100)
 - Autodesk Inventor
- Purpose of project: Improve on existing concepts
 - Improve size
 - Improve cost (our goal is to make something that's already been done but to do it cheaply (under \$1000))
- Existing vehicle to from which to get ideas:
 - EcoMapper Autonomous Underwater Vehicle
 - Boeing's Echoranger
 - US Navy Orcha
 - o Mark 18 Mod 2 "Kingfisher" UUV
 - NOAA's "Sentry"
 - o NOAA's "Sea Bed"
- Features of vehicle
 - o Unmanned
 - o Collision avoidance
 - Pathfinding
- Stages of project
 - MAE 434W: Remote control
 - MAE 435: Complete autonomy

- Main roles and responsibilities:
 - o Design
 - Analysis (validating work)
 - o Arduino
- General notes:
 - We might want to get certifications for using MLAB equipment.
 - We will meet with Dr. Kaipa at 11:00 AM on Thursday to get a more concrete idea of what we need to do to accomplish the project