Autonomous Underwater Vehicle Status Update (11/13/2023)

William Buhrig, Justin Day, Nick Eoff, Tom Herlihy, Matt Laverty, Colin Sizemore

Outlook on Semester Goals

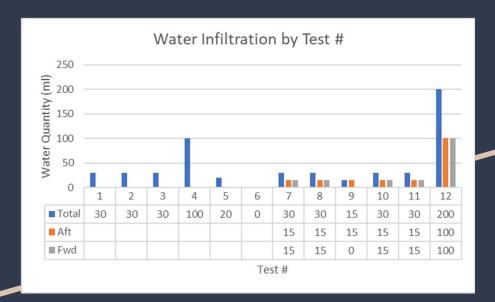
- Waterproofing
- Raspberry Pi Coding
- Buoyancy
- Remote transmission

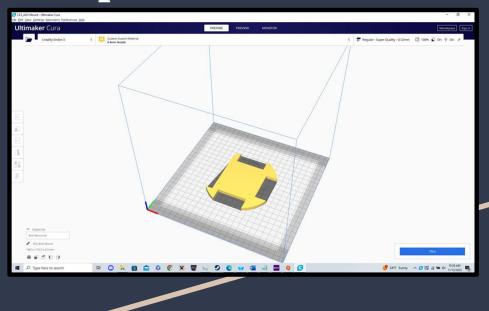
Applied Standards


- ASME Y14.5
 - o Geometric Dimensioning and Tolerances
- ASME BPVC Section X
 - Hydrostatic pressure design and testing
- ASTM D570-98
 - Water absorption of Plastics

Waterproofing

- In our first round of testing it was found that the O-ring on the top part of the AUV was leaking water.
- Install thicker O-ring.
- Apply lubricant to improve water resistance.


Waterproofing Cont.

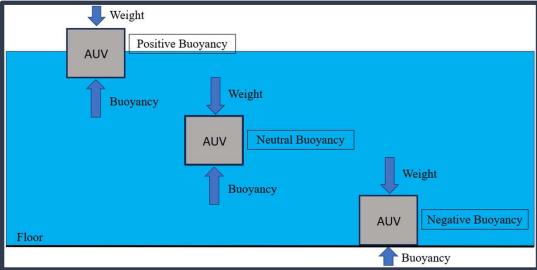

- After testing the seal created by balloons worked best for sealing, temporarily
- Water found to attack hull, waterproof was coating applied in response
- In the process of discovering the most effective gasket solution possible.

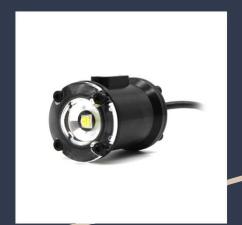
Waterproofing Results by Test

- Test 1-5: Original O-Ring Testing
 - Test 4: Missing Component Caused Infiltration
- Test 6: O-Ring w/ Cut-up Latex Balloons
- Test 7-11: Latex Sheet w/ O-Ring
- Test 12: Multiple Latex Sheets w/o O-Ring

Control System Improvements

- Mounted to inside of the AUV in rearmost area
- Components will be inside waterproof mounts
- Raspberry Pi used to parse commands into motor signals


Raspberry Pi Coding


```
GPIO.output(18, GPIO.LOW)
elif command == 'GPIO23_ON':
GPIO.output(23, GPIO.HIGH)
elif command == 'GPIO23_OFF':
GPIO.output(23, GPIO.LOW)
     roid setup() {
// Open serial connection to computer
                                                                                                                                                                                                                                                             GPIO.output(23, GPIO.LOW)
ellf command = "GPIO24_ON":
GPIO.output(24, GPIO.HIGH)
ellf command == "GPIO24_OFF":
GPIO.output(24, GPIO.LOW)
[11:32 PM]
import serial
import pggame
  void loop() {
// Read analog value from pin A0
int value = analogRead(A0);
    // Scale value to range 0-255
int scaled_value = map(value, 0, 1023, 0, 255);
    // Send scaled value over serial connection 
Serial.println(scaled_value);
                                                                                                                                                                                                                                                                # Initialize Pygame joystick module
    delay(100);
   [11:32 PM]
                                                                                                                                                                                                                                                               # Open serial connection to Raspberry Pi
ser = serial.Serial(//dev/ttyS0', 9600, parity=serial.PARITY_NONE, stopbits=serial.STOPBITS_ONE)
 import spidey
import serial
                                                                                                                                                                                                                                                              # Main loop
while True:
# Process Pygamg events
for event in pygamg.event.get():
if event.type == pygamg.e/DYXISMOTION:
# Map pygstick input to command to send to Raspberry Pi
if event.asis == 0:
# Joystick moved feltright, send command to GPIO pin 18
if event.value <-0.5:
ser write(b'GPIO18_ONn')
elif event.value > 0.5:
ser write(b'GPIO18_ONn')
# Open SPI connection to MCP3008 chip
spi = spidey,SpiDey()
spi.open(0, 0)
# Open serial connection to computer ser = serial.Serial('/dev/ttyS0', 9600, parity=serial.PARITY_NONE, stopbits=serial.STOPBITS_ONE)
# Main loop
while True:
     # Read analog value from MCP3008 chip
adc_value = spi_x[e;2([1, 8 + 0 << 4, 0])
value = ((adc_value[1] & 3) << 8) + adc_value[2]
                                                                                                                                                                                                                                                                              ser.write(b'GPIO18_OFF\n')
elif event.axis == 1:
                                                                                                                                                                                                                                                                                    # Joystick moved up/down, send command to GPIO pin 23 if event.value < -0.5:
      # Scale value to range 0-255
scaled_value = int(value / 1023.0 * 255)
                                                                                                                                                                                                                                                                                     ser.write(b'GPIO23_ON\n')
elif event.value > 0.5:
ser.write(b'GPIO23_OFF\n')
 # Send scaled value over serial connection
ser.write(str(scaled_value).encode() + b\n')
[11:32 PM]
                                                                                                                                                                                                                                                              ser.mitelio SPIO23_OFPn)
elif event hype = pggams_ADWBUTIONO.QVM):
# Joystick button pressed, send command to GPlO pin 24
ser.mitelio SPIO24_ONIPBUTIONUP:
# Joystick button released, send command to GPlO pin 24
ser.mitelio SPIO24_OFPn)
[1132 PM]
[1132 PM]
  import serial
import RPi.GPIO as GPIO
   # Set up GPIO pins
GPIO.setmode(GPIO.BCM)
GPIO.setmp(18, GPIO.OUT)
GPIO.setup(23, GPIO.OUT)
GPIO.setup(24, GPIO.OUT)
                                                                                                                                                                                                                                                                import serial
import RPi.GPIO as GPIO
                                                                                                                                                                                                                                                                # Set up the GPIO pin
GPIO.setmode(GPIO.BCM)
GPIO.setup(18, GPIO.OUT)
# Open serial connection to computer ser = serial.Serial('/dev/ttyS0', 9600, parity=serial.PARITY_NONE, stopbits=serial.STOPBITS_ONE)
# Main loop
while True:
     # Read command from serial connection
command = ser.readline().decode('utf-8').strip()
                                                                                                                                                                                                                                                              # Listen for incoming data on the serial port
while True:
data = ser.readline().decode(utf-8).rstrip()
if data:
# If data is received, toggle the GPIO pin
GPIO.outoutf18. not GPIO.inout(18))
     # Take action based on command
if command == 'GPIO18_ON':
GPIO.output(18, GPIO.HIGH)
elif command == 'GPIO18_OFF':
```

Buoyancy

- Add weights to the inside of the UAV to equalize the weight and the buoyancy force.
- Move the Center of Mass below the Center of Buoyancy.

Budget Update

• Camera and lighting system purchases

	Wage Co	osts (so far)	ALCOHOL: ALLOW				
Project Members:		Cost per Hour	Total Cost Sort & Filter				
Nick	8	\$25	\$200				
Justin	8	\$25	\$200				
Matt	8	\$25	\$200				
Will	11	\$25	\$275				
Colin	8	\$25	\$200				
Tom	8	\$25	\$200				
		Total Cost:	\$1,275				
Matierals Cost (to be	purchased)						
Raspberry Pi	\$50		Total Budgeted Cost	\$1,385			
Weights	\$30	l	Cumulative Budgeted Cost	\$1,000			
O-rings	\$20		Cumulative Actual Cost	\$1,275			
Fransmitter and Reciever	\$10		Cumulative Earned Value	0% completed	therefore no earned valu	\$0	
Total Cost:	\$110		Cost Performance Index	1.08627451			
			Cost Variance	7.94223827			
Equipment and Soft	ware Cost						
Python \$0			Cor		st Charts		
Auto CAD	\$0		Cost Charts				
Laptops	\$0	\$1	,400		\$1		
Excell	\$0	\$1	,200		\$1		
Total Cost:	\$0	\$1	,000		**		
			800		\$1		
Facilities Co			6600		\$0		
Dr. Kaipa's Pool	\$0		\$400		50		
Dr. Kaipa's Lab	\$0		\$200		\$0		
Total Cost:	\$0		2000/02 15 15				
			\$0		\$0		
			Cumulative Budgeted C	Cost Cumul ativ	e Actual Cost		
			——Cumulative Earned Value				

GANTT Chart

ID	0	Task Mode	Task Name	Duration	Start	Sep '23 Oct '23 Nov '23 Dec '23 20 27 3 10 17 24 1 8 15 22 29 5 12 19 26 3 10
1		*	Initial Team Meetings	12 days	Mon 8/28/23	
2		*	Intial Advisor Meetings	6 days	Wed 9/13/23	
3		*	Gather Materials	21 days	Wed 9/13/23	
4		*	Prepare and Present Oral Presentation 1	6 days	Mon 9/18/23	
5		*	Research and Implement Engineering Standards	11 days	Mon 9/18/23	
6		*	Begin Design Improvements	21 days	Mon 9/25/23	
7		*	Prepare and Present Mid Term Oral Presentation	6 days	Mon 10/9/23	
8		*	Test Design	10 days	Mon 10/23/23	
9		*	Prepare and Present Oral Presentation 2	6 days	Mon 10/30/23	
10		*	Iterate Design Improvements	12 days	Sat 11/4/23	
11		*	Final Design Testing	10 days	Mon 11/20/23	
12		*	Prepare and Deliver Final Presentation and Poster	6 days	Wed 11/29/23	
13		*	Prepare and Deliver Final Product	4 days	Fri 12/1/23	