

Autonomous Drone Swarms Final Presentation

Department of Mechanical & Aerospace Engineering Old Dominion University

By: Natalie Jones, Timothy Kent, Maggie Atkinson, Austin Worrell, Mahmoud Zeid, Anzam Sheak, Daley Goff, Logan Johnson

Introduction

- Drones are becoming a more popular technology, commercially, recreationally, and by government use
- The ability to fly them in a group is needed for commercial and military use
 - Delivery for companies like Amazon
 - $\circ \qquad {\sf Drone} \ {\sf usage} \ {\sf in} \ {\sf the} \ {\sf military} \ {\sf can} \ {\sf reduce} \ {\sf deaths}$
 - Delivering supplies to people who are quarantined or the elderly/disabled

Accomplishments

- Full construction of both drones
- Manual + independent autonomous flight for both drones
- Designed and printed: propeller guards, custom camera + gps, and custom lidar mounts

Challenges

We faced a several challenges throughout our project cycle. These challenges include:

- Part shipment delays
- 3D Printer sizes to accommodate for 10 inch propellers
- Initial object avoidance crash
- ArduPilot Lidar programming for awareness and object avoidance
- Difficulties finding a location to perform test flights

Engineering Standards

Federal Aviation Administration

There are several engineering standards that we follow as guidelines for this project. The many principles and ethics are set by the organizations below.

- ASME: The American Society of Mechanical Engineers
- IEEE: The Institute of Electrical and Electronics Engineers
- FAA: Federal Aviation Administration

Engineering Standards (cont.)

Key standards that were monitored and executed in practice as as follows:

- FAA licensed flyers must
 - Ensure drone is registered through the FAA if weight > 0.55 lbs
 - Must keep drone below 400 ft in uncontrolled airspace
- ASME regulations to maintain and repair our UAV to follow health and safety protocol
 - Ensures the safety of civilians and environment
- IEEE regulations to utilize environmentally safe electrical boards and parts
 - Lithium batteries for drones to be supervised and balanced after each test flight
 - Store and charge batteries away from flammable objects
 - Room temperature and dry environment
 - Fireproof LipoSack, ammo box, or a cash box

LiPo Batteries are quite volatile and require special precautions. Rule of thumb: 80/20 rule: Discharge no more than 80% of the battery.

Drone Design

Flight Time at Full Power:

5200mAh/(35x1000 mA/A)x0.8x60 min/h = 7.2 minutes

- Frame/Motor/Propeller: Hexsoon Edu-450 V2
- Cube Orange Autopilot Flight Controller: Cube Orange+ Standard Set ADS-B (IMU V8)
- Distance Sensor: Ultrasonic Distance Sensor Hc-Sr04
- Object Avoiding Sensors: Lidar-Lite, Slamtec Rplidar A1-360 Laser Range Scanner
- Optical Flow Sensor: Hereflow Ir-Lock
- Camera: Siyi Ip Camera For Siyi Ak28 Vd32 Mk15
- Battery Charger: Gens Ace Imars Dual Channel AC200W/DC300W Balance Charger Black
- Battery: Tattu 5200mAh 14.8V 35C 4S1P Lipo Battery Pack
- Transmitter/Receiver: SIYI MK32 Long Range Remote Controller with 7 Inch HD High Brightness LCD Touchscreen
- Prop Guards, Camera+GPS mount, Lidar mount: PLA Filament (Plastic, Fiberglass, Carbon Fiber)

Drone: 1761.6 g

Voltage Current Relationships for DC Motors Speed $\propto V$ Torque $\propto I$

AutoCAD Modelling

- Using Fusion360 software, we modelled prop guards and sensor mounts that would be suitable for our two Hexsoon drones in both indoor and outdoor environments
- Prop guards to almost fully encompass the drone perimeter
 - Protects against collision and injury to nearby pedestrians
 - \circ 4 * 10" Propeller guards made of PLA Filament
- Mounts for our sensors
 - Lidar 360, GPS, and Camera made of PLA Filament

Drone Construction

- Two drones were built with identical design.
- Frame was chosen for aerodynamic design, which allowed the drone to waste less battery
- Designed and 3-D printed prop guards and mounts for 360 Lidar, GPS and Camera installation

Method

Autonomous Sensors Here Flow Sonar Range Finder aaaa 3 5 4 Slamtec Rplidar (Object avoidance sensor) **GPS** Module

Software - Programming Methods

- Installing Firmware
- Ardupilot : Pixhawk : Mission Planner : Flight
- GPS Module
- Limitations

Gantt Chart

ID	0	Task Mode	Task Name	Duration	Start	Finish	Predecessors	Resource Names	Aug	Sep	Qtr 4, 2022 Oct	Nov
1		*	Autonomous Swarm Drone	166 days?	Fri 9/9/22	Fri 4/28/23						
2		*	I. Research Aurdo-Pilot/Copte	166 days?	Fri 9/9/22	Fri 4/28/23				_		
3		*	II. Collaborate with instructors	166 days?	Fri 9/9/22	Fri 4/28/23				-		
4		*	A. Meet with	166 days	Mon 5/1/23	Mon 12/18/	26,13,19,23,26,29	,				
5		*	B. Meet with ODU Drone	149 days	Mon 5/1/23	Thu 11/23/23	6,32,29,35					
6		*	III. Materials	11 days?	Fri 9/23/22	Fri 10/7/22	23,29,32,13,19,3	e.		1		
7		*	A. Frame	11 days	Fri 9/23/22	Fri 10/7/22						
8		*	B. Motors	11 days	Fri 9/23/22	Fri 10/7/22						
9		*	C. Propellers	11 days	Fri 9/23/22	Fri 10/7/22						
10		*	D. Speed Cont	11 days	Fri 9/23/22	Fri 10/7/22						
11		*	E. GPS	11 days	Fri 9/23/22	Fri 10/7/22				1.1		
12		*	F. Blade Guard	11 days	Fri 9/23/22	Fri 10/7/22						
13		*	IV. Budget	16 days?	Fri 10/7/22	Fri 10/28/22	2 23,26,29,32,35					<u> </u>
14		*	A. Smart Transmitter/R	16 days	Fri 10/7/22	Fri 10/28/22					-	
15		*	B. Cube Orange	16 days	Fri 10/7/22	Fri 10/28/22						
16		*	C. Battery/ Battery	16 days	Fri 10/7/22	Fri 10/28/22						
17		*	D. Sensors	16 days	Fri 10/7/22	Fri 10/28/22						
18		*	E. Replaceme	16 days	Fri 10/7/22	Fri 10/28/22						
			Task	1		Inactive Summ	mary	External T	asks			
Project: Drone_Project Date: Tue 1/17/23			Split			Manual Task		External N	lilestone	*		
			ect			Duration-only Manual Summary Rollup		Deadline		*		
			Summary					Progress	Progress			
			Project Sum	mary	1	Manual Sumn	nary	Manual Pr	ogress			
			Inactive Task	¢		Start-only	E					
			Inactive Mile	stone	>	Finish-only	2					
						Page 1						

	,
	1
	1

Website

- The website is fully furnished and completed
 - Respective documentation of weekly progress meetings and the entire project life cycle are attached
- Website Link: <u>http://dasp.mem.odu.edu/~swarm_sp23/index.html</u>

Final Flight

Future Project Goal

- According to Dr. Kapia, our project is a foundation for future students to build upon
- Next year's class will be able to:
 - Finish programming Lidar with complete object avoidance
 - Construct a third drone to add to the swarm and test more "follow-the-leader" type scenarios
 - Add payload to the drones to highlight their full practicality

Acknowledgements

Contributions:

Drs. Krishna Kaipa, Thomas Alberts, and Drew Landman

Old Dominion Drone Club:

Rob Stuart, Ana Eggleston (Secretary), Jack Hawkins (President)

Thank you to Dr. Zhang and the class for being a part of our project journey!

References

ArduPilot Dev Team. (n.d.). *Loading firmware* **f**I. Loading Firmware - Mission Planner documentation. Retrieved October 24, 2022, from https://ardupilot.org/planner/docs/common-loading-firmware-onto-pixhawk.html [1]

ArduPilot Dev Team. (n.d.). *Robsense swarmlink*¶. Robsense SwarmLink - Copter documentation. Retrieved October 24, 2022, from https://ardupilot.org/copter/docs/common-telemetry-robsense-swarmlink.html?highlight=dron e%2Bswarm [2]

"Safety Codes and standards," ASME. [Online]. Available:

https://www.asme.org/codes-standards/publications-information/safety-codes-standards.[3]

"The Recreational Uas Safety Test (trust)," The Recreational UAS Safety Test (TRUST) | Federal Aviation Administration. [Online]. Available:

https://www.faa.gov/uas/recreational_flyers/knowledge_test_updates. [4]

"The National Electrical Safety Code® (NESC®)," IEEE Standards Association, 19-Sep-2022. [Online]. Available:

https://standards.ieee.org/products-programs/nesc/?utm_source=mm_wdw&utm_campaign=ne sc&utm_medium=std&utm_term=nesc.[5]

W. Chen, J. Liu, H. Guo, and N. Kato, "Toward robust and intelligent drone swarm: Challenges and future directions," *IEEE Network*, vol. 34, no. 4, pp. 278–283, Aug. 2020. [6]