A Low Cost Localization Solution Using a Kalman Filter for Data Fusion

Peter Haywood King

Thesis submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of

Master of Science
in
Mechanical Engineering

Dr. Alfred L. Wicks
Associate Professor of Mechanical Engineering
Virginia Tech

Dr. Charles F. Reinholtz
Alumni Distinguished Professor, Virginia Tech
Chair, Mechanical Engineering, Embry-Riddle Aeronautical University

Dr. Dennis W. Hong
Assistant Professor of Mechanical Engineering
Virginia Tech

December 8, 2006
Blacksburg, Virginia
A Low Cost Localization Solution Using a Kalman Filter for Data Fusion

Peter Haywood King

ABSTRACT

Position in the environment is essential in any autonomous system. There are many ways to localize and many sensors that provide the data. This paper presents a simple way to systematically integrate sensory data to provide a drivable and accurate position solution. The data fusion is handled by a Kalman filter tracking five states and an undetermined number of asynchronous measurements. This approach takes advantage of the short-term accuracy of odometry measurements and the long-term fix of a GPS unit. The filter is tested using a suite of inexpensive sensors and then compared to a differential GPS position. The output of the filter is indeed a drivable solution that tracks the reference position remarkably well.
Acknowledgments

I would like to first thank my parents for their support over the years. The quarter-century of blind faith has been a gift and is truly appreciated.

I would also like to thank my advisors here at Virginia Tech: Dr. Wicks, Dr. Hong, and especially Dr. Reinholtz. Without the mentorship of these men my academic journey would have been unexciting and short-lived.

Finally I would like to thank my colleagues here at Virginia Tech past and present for all the fun amidst the toil. I would specifically like to thank Andrew Bacha, Sean Baity, Brett Gombar, and Mike Avitable for their inspiration and advice as I began my work with unmanned systems. Thanks to Jesse Farmer and Jon Weekley who worked along side me, kept me honest, and did not let me work too hard.
Contents

Chapter 1: Introduction 1
 1.1 Thesis Overview ... 1
 1.2 Motivation .. 2

Chapter 2: Base Vehicle 4
 2.1 Intelligent Ground Vehicle Competition (IGVC) 4
 2.2 Virginia Tech Vehicle - Johnny-5 6

Chapter 3: Background 9
 3.1 Positioning ... 9
 3.1.1 Dead Reckoning .. 10
 3.1.2 Global Positioning System 12
 3.2 Kalman Filter ... 14
 3.2.1 Background ... 14
 3.2.2 Linear Kalman Filter .. 17
 3.2.3 Extended Kalman Filter .. 18
 3.2.4 Error Modeling .. 19
 3.2.5 Redundant & Asynchronous Inputs 20
 3.2.6 Uses of the Filter .. 20

Chapter 4: Filter Design 21
 4.1 Filter Construction .. 21
 4.1.1 Assumptions & Effects 22
 4.1.2 State Formulation ... 23
 4.1.3 Model - Predict Stage 24
 4.1.4 Measurement - Update Stage 27
 4.1.5 Structure ... 30
 4.2 Filter Features ... 32
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>IGVC Logo</td>
<td>5</td>
</tr>
<tr>
<td>2.2</td>
<td>Johnny-5 on the hillside</td>
<td>6</td>
</tr>
<tr>
<td>3.1</td>
<td>Differentially driven kinematics</td>
<td>11</td>
</tr>
<tr>
<td>3.2</td>
<td>Ackerman Steered kinematics</td>
<td>12</td>
</tr>
<tr>
<td>3.3</td>
<td>Kalman Filter process flow</td>
<td>16</td>
</tr>
<tr>
<td>4.1</td>
<td>Filter output</td>
<td>34</td>
</tr>
<tr>
<td>4.2</td>
<td>Input to filter</td>
<td>35</td>
</tr>
<tr>
<td>4.3</td>
<td>Error modification</td>
<td>35</td>
</tr>
<tr>
<td>5.1</td>
<td>Straight line data with no starting point</td>
<td>38</td>
</tr>
<tr>
<td>5.2</td>
<td>Straight line data with starting point</td>
<td>39</td>
</tr>
<tr>
<td>5.3</td>
<td>Straight line errors</td>
<td>40</td>
</tr>
<tr>
<td>5.4</td>
<td>Curve & return</td>
<td>41</td>
</tr>
<tr>
<td>5.5</td>
<td>Curve & return error</td>
<td>41</td>
</tr>
<tr>
<td>5.6</td>
<td>Complex path</td>
<td>42</td>
</tr>
<tr>
<td>5.7</td>
<td>Complex path error</td>
<td>43</td>
</tr>
<tr>
<td>5.8</td>
<td>Path with no pop protection</td>
<td>44</td>
</tr>
<tr>
<td>5.9</td>
<td>Path with pop protection</td>
<td>45</td>
</tr>
<tr>
<td>A.1</td>
<td>P-V Example: Step 0</td>
<td>54</td>
</tr>
<tr>
<td>A.2</td>
<td>P-V Example: Step 1</td>
<td>57</td>
</tr>
<tr>
<td>A.3</td>
<td>P-V Example: Step 2</td>
<td>59</td>
</tr>
<tr>
<td>A.4</td>
<td>P-V Example: Step 3</td>
<td>59</td>
</tr>
<tr>
<td>A.5</td>
<td>P-V Example: Step 4</td>
<td>60</td>
</tr>
<tr>
<td>A.6</td>
<td>P-V Example: Step 5</td>
<td>60</td>
</tr>
<tr>
<td>A.7</td>
<td>Error: Inputs perfectly known, Q=R</td>
<td>61</td>
</tr>
<tr>
<td>A.8</td>
<td>Error: Inputs perfectly known, Q>R</td>
<td>63</td>
</tr>
<tr>
<td>A.9</td>
<td>Error: Inputs perfectly known, Q<R</td>
<td>65</td>
</tr>
</tbody>
</table>
A.10 Error: Inputs ± 10%, Q= R . 67
A.11 Error: Inputs ± 10%, Q > R . 69
A.12 Error: Inputs ± 10%, Q < R . 71
A.13 Error: Inputs ± 50%, Q, R Modeled . 73
List of Tables

2.1 Sensor suite on Johnny-5 ... 8

3.1 GPS Solution Comparison ... 14

A.1 Filter Summary - Inputs perfectly known, Q=R 62
A.2 Filter Summary - Inputs perfectly known, Q>R 64
A.3 Filter Summary - Inputs perfectly known, Q<R 66
A.4 Filter Summary - Inputs ± 10%, Q=R ... 68
A.5 Filter Summary - Inputs ± 10%, Q>R ... 70
A.6 Filter Summary - Inputs ± 10%, Q<R ... 72
A.7 Filter Summary - Inputs ± 50%, Q,R Modeled 74
Chapter 1

Introduction

In any unmanned system application, localization is paramount. In any engineering application, cost is a factor. The balance of these two statements is not trivial. This thesis presents a simple implementation of a Kalman filter to provide a drivable localization signal at a low cost. Originally intended for a small autonomous vehicle, the approach was designed to be easily ported to other platforms.

1.1 Thesis Overview

This thesis presents a way to provide a drivable and accurate position solution using inexpensive sensors. A Kalman filter is used to fuse that data from these sensors to produce an output that is better than that of any single sensor. The goal is to provide a cost-effective solution accurate enough to replace a system that is twenty times the cost. This is another feat for value engineering where smart software design can replace expensive hardware with little degradation in performance.

This thesis will cover the basics of the Kalman filter along with positioning solutions, present
the test platform, describe the formulation of the filter presented, and discuss the results. The remainder of this chapter will set up the problem and outline the solution. Chapter 2 will then discuss the specific application of this technology as well as describe the test platform.

Chapter 3 will cover the existing solutions. This includes the relative positioning provided by the system of Dead Reckoning. The chapter will also present the basics of GPS and some of the commercially available systems. Finally it will present the Kalman filter, a way to combine multiple sources of data in an optimal way.

Chapter 4 will cover the topic of the actual design of the filter. The structure, system model, and measurement scheme will be first. This filter was designed to be robust and for ease of use, so the interface and additional features will be presented in this section, as well. The resulting output will be discussed in Chapter 5. The output will be compared to a top-of-the-line system to give perspective to the overall performance.

1.2 Motivation

The first step in achieving any goal is to assess the current position. While this adage has a broad reach, it is also applicable to the unmanned arena. When trying to navigate through the world, a frame of reference must be established. When the frame is outside of the vehicle, there must be a way of locating that vehicle in this frame. There are many different ways to perceive position and many ways to measure displacement; the trouble lies in deciphering the massive amounts of data. To use all of the information properly, there needs to be a way to combine the perceived states into a single best estimate. Fortunately, the Kalman filter has been around for half a century and is still one of the best ways to incorporate several inputs regarding a system. This should provide an excellent shell for a localization solution for an autonomous system.

Many unmanned systems are small and operate in environments that can fall into a simple model. One such application is in the Intelligent Ground Vehicle Competition (IGVC). In this competition, mobile robots are asked to perform tasks autonomously and the entries are judged
on performance as well as design. Recent advances in robotics have brought control schemes to
the forefront of investigation. In this aspect of the competition, Virginia Tech has excelled, but
engineering is based on many design parameters, not only performance. There is still the problem
of describing the world and making use of the information optimally. This information can come
from many sources and encompass many descriptions. The data can have varying degrees of
accuracy and wide range of cost associated with it.

The filter presented in this work is a method of combining data from several sources to produce
a single estimate of position. To fuse the data, this scheme will use a Kalman filter and exploit the
inherent advantages. The final filter will use the asynchronous input and the optimal estimation
provided by Kalman’s approach to produce a drivable position solution. This is all in the attempt
to use software to eliminate expensive hardware, making an autonomous vehicle even more of an
astonishing feat of engineering.
Chapter 2

Base Vehicle

Virginia Tech’s success at the Intelligent Ground Vehicle Competition has put the university in the fortunate position of pursuing research to achieve the same standard of performance by alternative means. The effort described here is to replace the expensive GPS unit with a lower cost unit and resolve the loss of accuracy through the use of data fusion.

The test platform is Johnny-5, an autonomous ground vehicle developed previously by Virginia Tech for the Intelligent Ground Vehicle Competition (IGVC). Johnny-5 is a three-wheeled, differentially driven robot with a full compliment of sensors to perform in the IGVC. The rugged construction, simple dynamics, and integrated sensor suite make it a perfect vehicle for research.

2.1 Intelligent Ground Vehicle Competition (IGVC)

The IGVC is an annual competition for students at the university level. To compete, teams must design, build, and program an autonomous vehicle to compete in three events: The Autonomous Challenge, the Navigation Challenge, and the Design Competition[8]. These events are staffed by
the sponsoring companies and programs, and judged by professionals from industry. Here the need for an accurate but inexpensive position solution is brought by the competition parameters and by the judges’ drive for engineering application.

![IGVC Logo](image)

Figure 2.1: IGVC Logo.

Autonomous Challenge

The Autonomous Challenge is an outdoor obstacle course. Vehicles must stay between lines that are painted on grass. These lines can be colored white or yellow and may be solid, dashed, or missing altogether. Inside the lines there are obstacles to avoid. These obstacles take the form of traffic barrels and cones, construction sawhorses, colored garbage bins, ramps, potholes, sand pits, and trees. Obstacles may be moved between runs and the direction of travel around the course may also be changed. The event is judged on adjusted time to complete the course. If no one has completed the course, the furthest adjusted distance traveled wins. The times and distances are adjusted for traffic violations such as leaving the course, grazing obstacles, etc.

Navigation Challenge

The Navigation Challenge requires the vehicle to visit GPS waypoints. The only information given is the coordinates of the waypoints. There are many different obstacles that are in the way including barrels, barriers, fences to name a few. Vehicles must autonomously make it through the
field, getting within 1 or 2 meters (depending on the difficulty) of the waypoint. Judging of the competition is based on the number of waypoints hit and the time it took to reach them.

Design Competition

The Design Competition is the judging of the design process and innovations brought to competition. The three parts of this competition are an oral presentation, a written report, and an inspection of the vehicle. The Judges come from various industries and are concerned with the product produced regardless of dynamic results.

2.2 Virginia Tech Vehicle - Johnny-5

Johnny-5 is an autonomous vehicle created to compete in the Intelligent Ground Vehicle Competition. In fact, Johnny-5 (shown in figure 2.2) has had a long line of successes at the IGVC. The first year it was entered (2004), it received the first place overall. In subsequent years it received third (2005), second (2006), and finally first again in 2007.

![Figure 2.2: Johnny-5 on the hillside.](image-url)
Mechanical System

Johnny-5 (J5) is a differentially steered, three wheeled vehicle [7]. The rugged frame is crafted of aluminum and is a single body housing the electrical, computing and sensing components. The two drive wheels are independently driven by two brushless DC motors produced by Quicksilver Control. The output of the motor is reduced by a 10:1 gear head to spin the 15” composite wheels.

Electrical/Computing System

Johnny-5 has a hybrid power system connected in series. A 1000 Watt portable generator powers the battery charger which, charges the batteries that run the vehicle. All of the sensors and components run off either 12 or 24 volts. The compass, Novatel GPS, and the camera all run on the regulated 12v line, while the SICK Laser Range Finder (LRF) runs on a regulated 24v. The motors run on an unregulated 24v power line. The computer can also be plugged into the generator to use the standard AC power supply that comes with the laptop.

The computing on the vehicle is done by a Sager NP8890 laptop. While currently slightly antiquated, it has proved to be more than adequate to control the vehicle. The laptop processes all of the data coming in from the sensors by way of serial RS-232 connections. The interface and navigation is all programmed in LabVIEW by National Instruments. This is a programming language that is a graphical interface that is instrumental in rapid development of sensors and control. The data can be ordered graphically and structured in a way that is user friendly. This will also be the native language for the filter presented later.

Sensor Suite

Onboard, J5 has the necessary components to compete in the IGVC. For line detection as well as obstacle avoidance, there is a Unibrain® Fire-i camera mounted on the mast. The primary obstacle avoidance is the LRF on the front. There is also a Novatel Propak LB that receives Onmistar HP corrections to determine the position and a PNI 3-axis compass to determine orientation. In
addition, the Quicksilver motors are equipped with a relative quadrature encoder. The sensors are summarized in Table 2.1. For this work, Johnny-5 will also be equipped with a Ublox Antaris 4 GPS evaluation unit. This will be used as the position input to the developed filter.

Table 2.1: Sensor suite on Johnny-5

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Measurement</th>
<th>Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unibrain Fire-i camera</td>
<td>Vision</td>
<td>640 x 480 pixels</td>
</tr>
<tr>
<td>SICK LMS 291</td>
<td>Range</td>
<td>180 degrees, cm accuracy</td>
</tr>
<tr>
<td>Quicksilver Motor Encoders</td>
<td>Motor Rotation</td>
<td>16000 ticks/rev</td>
</tr>
<tr>
<td>PNI Compass</td>
<td>Orientation</td>
<td>0.8 degrees accuracy</td>
</tr>
<tr>
<td>Novatel Propak + OmniStar</td>
<td>Position</td>
<td>CEP of 10 cm</td>
</tr>
<tr>
<td>UBlox Antaris 4</td>
<td>Position</td>
<td>CEP of 5 m</td>
</tr>
</tbody>
</table>
Chapter 3

Background

When designing a position solution, an understanding of the dominant techniques of positioning and their inherent errors is required. This chapter will discuss positioning and also give some background into the Kalman filter. This foundation is what will drive the fusion of data into a position solution that is more accurate and more drivable than any of the inputs by itself.

3.1 Positioning

The question “Where am I?” has several answers. Likewise with autonomous systems, there are many ways of positioning a vehicle within an environment. An increasingly common solution is the Global Positioning System (GPS). This solution will give an absolute position measurement in reference to the earth. There are also ways of finding a relative position by using Dead Reckoning (DR). Both techniques have advantages and disadvantages, the goal is to combine them in an intelligent way to utilize their advantages. This section will cover the basics of positioning as they are generally applied to autonomous systems.
3.1.1 Dead Reckoning

Dead Reckoning is the estimation of the current position based on a previous position, rate of travel, direction, and time. The model of the motion comes down to the vehicle kinematics. The method of advancement is the integration over time, thus errors tend to accumulate in the position solution [3]. This means that the solution is good in the short term, but estimations will probably diverge over time. This error can come from a number of sources. The vehicle parameters can be inaccurate (wheel base, wheel diameter, etc.), the measuring technique could be measuring the wrong thing (wheel slip), or the environment may not be conducive to simplified models (uneven terrain).

Measurement usually uses some form of odometry. Generally wheel encoders are used, but there are other methods as well including vision [1]. Wheel encoders are excellent choices for DR because they are inexpensive and offer high sampling rates. This is desirable because if the information is going to be combined with other measurements, DR would provide the short-term accuracy component. The faster the samples, the less room for error.

The velocities can be broken up into two components, forward and rotational. Finding these components of the velocities is a matter of modelling the motion with respect to the known components. For wheel encoders, the wheel speeds are known but the vehicle velocity components are desired. With different vehicles the way to arrive at these values differ, but there are a few useful models to understand.

Differential Drive

In a differentially driven vehicle the velocity is rather simple to derive from the wheel speeds using the instant centers. The concept of an instant center is that at any moment in time, there is a point around which a rigid body appears to be rotating. The entire system is attached to the rigid body. Since angular velocity must be conserved, the distance to the instant center from the wheels is used to determine the angular rate of the rigid body, and then projected to the vehicle’s center of mass.
This can be simplified to the equation presented in figure 3.1.

![Diagram of Kinematics of a differentially driven vehicle](image)

Figure 3.1: Kinematics of a differentially driven vehicle.

The remaining component of wheel velocities is the rotational component. The difference of the wheel velocities with respect to the average velocity will be the rotating component, but to get it into the angular rate of the vehicle, divide by half of the track width. This can be simplified into the form showed in figure 3.1. These are the equations for the velocities of a differentially steered vehicle given the wheel velocities and the track width of the vehicle.

Bicycle Model

In vehicles that have three driven wheels, or an Ackerman steered vehicle, the model of choice is the bicycle model. In Ackerman steered vehicles, it is assumed that the front wheels are turned slightly differently so that the instant centers of each wheel coincide. From this instant center, an equivalent kinematic model can be produced with one wheel in front and one wheel in back, mimicking a bicycle. From here, the forward velocity is determined the same as the differential case. The angular velocity is still a function of the curvature being driven, but it is derived a little differently [11]. Figure 3.2 shows the formulation of this model.
3.1.2 Global Positioning System

The Global Positioning System (GPS) is a system of 24 satellites orbiting earth in six orbital planes [9]. This has become the most popular way of positioning with respect to the Earth because of its ease of use, inexpensive implementation, and wide range of availability. Each satellite broadcasts a signal from its known position in the sky. The GPS receiver needs four of these signals to be able to discern the location through time-of-flight calculations. Four signals are needed because accurate, synchronized clocks are prohibitively expensive so the time is solved for as a fourth variable along with the three-dimensional position.

The output from a GPS receiver is the solution to the pseudorange equations (from the four satellites) translated into the output the user can utilize, generally latitude and longitude measurements. Another useful positioning scheme is the Universal Transverse Mercator (UTM) coordinate system. In this system, the globe is broken up into small zones that are then represented as an $x - y$ plane, measured in meters. The output of the GPS receiver is prone to errors, but the majority of these errors are transient effects of the atmosphere. For this reason, GPS is more accurate when averaged over longer periods of time.
Corrections

GPS measurements are subject to a number of sources of error. Disturbances in the atmosphere, internal clock error, and ephemeris error are all part of the system. There are errors on the user end as well. Multipath effects and RF interference can also cause distortion or loss of the signal. Anything that effects the direct line of sight with the satellite will cause position error.

Use of differential corrections can reduce many of the system-level errors. These corrections are measured by base stations around the world and transmitted back over satellites to be used by enabled receivers. In the western hemisphere, the Wide Area Augmentation System (WAAS) is used in this capacity. Designed for aircraft landing at airports, the system’s accuracy is not meant to be a global solution. OmniStar is another correction signal that is available by subscription. This is a worldwide correction that offers highly accurate returns.

Products

There are a number of commercially available GPS solutions on the market today. These all range in price and accuracy as well as the intended application. Handheld receivers can cost anywhere from $100 up to $600 and can include mapping functions as well as location information. The error reported by these products is the Circular Error Probable (CEP). This is the radius of the circle (based at the true value) that contains the measurement 50% of the time.

The Novatel Propak is a commercially available unit intended for high accuracy and built in communication with an Inertial Measurement Unit (IMU). These features come with a hefty price tag but, when coupled with the OmniStar correction, render a solution that is accurate with a CEP of 10 centimeters. Another commercially available unit is the U-Blox receiver. It is an integrated microchip receiver designed to be integrated into systems, but can be purchased with supporting circuitry or as complete unit ready for testing. Table 3.1 below lists some products available with the associated cost and error. The accuracy increases with the price, as would be expected.
Table 3.1: GPS Solution Comparison

<table>
<thead>
<tr>
<th>Product</th>
<th>Cost</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Garmin eTrax H® [6]</td>
<td>$100</td>
<td>10 meters</td>
</tr>
<tr>
<td>Magellan CrossoverGPS [13]</td>
<td>$400</td>
<td>3 - 5 meters</td>
</tr>
<tr>
<td>Novatel Propak LB plus</td>
<td>$6000</td>
<td>1.2 meters</td>
</tr>
<tr>
<td>Novatel Propak + OmniStar HP</td>
<td>$7500</td>
<td>0.1 meters</td>
</tr>
<tr>
<td>UBlax Antaris 4 [15]</td>
<td>$130</td>
<td>2.5 meters</td>
</tr>
</tbody>
</table>

3.2 Kalman Filter

The Kalman filter is one of the most widely used applications to have come out of state-space controls. This section will describe the background and principles of operation then go into more detail, presenting the governing equations of the filter.

3.2.1 Background

Rudolf E. Kalman was a pioneer of state-space controls [16]. In 1960 he proposed a method of filtering to improve on the limitations of the Wiener filter, which was a minimum mean-squared error (MMSE) filter proposed in the 1940’s. The concept of the filter is to simply average the measurements in a way that will reduce the squared error. Kalman’s filter allows for more sophisticated modeling of error, as well as a way to handle Multi-Input, Multi-Output (MIMO), systems.

The function of these filters is best illustrated with a simple example by Brown & Hwang [4]. Suppose there are discrete measurements (z_k) about a point along a line. To get an estimate of the actual position of the point (\hat{m}), the samples are averaged. Consider the first three iterations:

$$\hat{m}_1 = z_1,$$
$$\hat{m}_2 = \frac{z_1 + z_2}{2},$$
$$\hat{m}_3 = \frac{z_1 + z_2 + z_3}{3}$$

This operation will yield the sample mean at every iteration, but as time progresses, the memory usage and the number of operations increase. The same process can be repeated but with a different formulation:
Here, each iteration is treated as a weighted sum. The estimate is weighted such that the output is mathematically identical to the arithmetic mean; but between the iterations, the individual measurements are discarded and only the previous estimates are saved for use in future iterations. The end result is that the current estimate is based on the current measurement and the prior estimate. To produce an optimal estimate instead of the average, the weighting based off of the iterations could be replaced with weights assigned by relative uncertainty. In fact, this is what the Kalman filter does.

The Kalman filter carries the estimate and the weighting to be assigned to the estimate in matrices called the State Matrix and the Covariance Matrix, respectively. The State Matrix contains the states, or pertinent descriptions of the system. This would be the estimate of position in the averaging example, but it can also contain information on velocity, heading, anything that is being monitored, or anything that may be related to what is being monitored. The Covariance Matrix contains information about how the states vary with respect to each other. The diagonal of the covariance matrix is the variance for each state, which is a statistical indicator of the error associated with that state.

The information follows the flow depicted in figure 3.3. There are two major stages in the Kalman filter: the update stage and the prediction stage. The output of the filter will be the optimal combination of the current measurements and the system model based on the prior estimate. This optimal estimate should not be confused with a more accurate estimate. The filter only has the information of the system model and the sensory input; garbage in will still be garbage out.

Prediction Stage

In the prediction stage, the states are advanced through time according to a system model. This model may contain any equation to describe the states. This model is put into its state space formulation in order to be incorporated into the Kalman filter via the Transition Matrix.
Figure 3.3: Data flow of the Kalman filter.

The error produced by the model advancing the states is added to the covariance. This means that the cost of prediction is more error in the estimate of the state. If there were to be no correction provided to the model, the error would simply grow. This is the same sort of expectation when a control system is run open-loop. With no feedback, the states are not perfectly known and the error continues to accrue until the output is unusable.

Update Stage

The update stage, also called the correction stage, is responsible for updating the predictions with the measurements that have been acquired. This is the process that will rein in the error and correct the output states. This correction will be weighted as discussed in the averaging example. This weight, called the Kalman gain, is based on the uncertainties of the prediction (model-based state) and the measurements available.

The covariance is then reduced according to the how much the prediction had to be corrected. As the filter progresses, the measurement and the prediction should reach a point where the reduction in the covariance in the update step matches the error added by the prediction. At this point
the filter is considered converged.

Often times, an example helps understand how the filter operates. Appendix A examines a simple case of a point along a line.

3.2.2 Linear Kalman Filter

The simplest implementation of Kalman’s work is in the Linear Kalman Filter. This model makes the assumption that the governing equations are functions of the tracked states. These functions may be time varying, but the transition matrix, the error model, and the measurement matrix are all linear functions of the states. This approach can be applied to nonlinear systems, but the measurement matrix and the error propagation will be less accurate.

The prediction stage for the linear phase is a simple matter of stepping the states forward through time using the Transition Matrix, Φ_k. This matrix has the equations that make up the linear model. The covariance is then projected forward by adding the system covariance, Q_k, transformed by the Gamma Matrix, Γ_k.

$$
X_k^- = \Phi_k X_{k-1} \quad (3.1)
$$

$$
P_k^- = \Phi_k P_{k-1} \Phi_k^T + \Gamma_k Q_k \Gamma_k^T \quad (3.2)
$$

The update stage is accomplished by Computing the Kalman Gain, correcting the state estimate, and then updating the covariance. The Kalman gain (equation 3.3) is a function of the estimated errors, P_k^-, the Measurement Matrix, H_k, and the Measurement Uncertainty, R_k. This forms the ratio of how certain the measurement is in comparison to the prediction. The Kalman
gain is then used to correct the state estimate and reduce the state covariance.

\[
K_k = P_k^{-}H_k^T [H_kP_k^{-}H_k^T + R_k]^{-1} \tag{3.3}
\]

\[
X_k = X_k^{-} + K_k [Z_k - H_kX_k^{-}] \tag{3.4}
\]

\[
P_k = [I - K_kH_k]P_k^{-} \tag{3.5}
\]

3.2.3 Extended Kalman Filter

To handle a nonlinear plant, the Extended Kalman Filter (EKF) is used. In reality, it is an extension of the linear form of the filter. The equations are similar to the Linear Kalman Filter, but in order to account for the nonlinearities, the Transition Matrix and the Measurement Matrix are linearized by using the Jacobian of the time derivative. The structure of the filter is going to be comparable to the Linear Filter, but this linearization allows for nonlinear effects to be properly carried through the propagation of the filter.

\[
H_k = \frac{\partial h}{\partial x}(\hat{x}_k^{-}) \tag{3.6}
\]

\[
F_k = \frac{\partial f}{\partial x}(\hat{x}_k^{-}) \tag{3.7}
\]

where \(h\) is now the Measurement Matrix and \(f\) is the time derivative of the system model. In the extended scheme, the covariance will now be modified by this linearized form of the model and measurement transformations.

In the prediction stage, the state is advanced in the same fashion. The Transition Matrix is now a nonlinear expression of the model. This is usually written by inspection. The covariance is projected forward similarly as well, keeping in mind that the transformation has been linearized.

\[
X_k^{-} = \Phi_kX_{k-1}^{-} \tag{3.8}
\]

\[
P_k^{-} = F_kP_{k-1}^{-}K_k^T + \Gamma_kQ_k\Gamma_k^T \tag{3.9}
\]
Likewise, the update stage is similar, differing from the linear case by use of the linearization.

\[
K_k = P_k^{-1} H_k^T [H_k P_k^{-1} H_k^T + R_k]^{-1}
\]
\(3.10\)

\[
X_k = X_k^- + K_k [Z_k - hX_k^-]
\]
\(3.11\)

\[
P_k = [I - K_k H_k] P_k^-
\]
\(3.12\)

3.2.4 Error Modeling

In both formulations of the filter the error matrices \(Q_k\) and \(R_k\) are functions of the uncertainty. As the names imply, the state uncertainty matrix, \(Q_k\), is a measure of the error in the model and the measurement uncertainty matrix, \(R_k\), is the uncertainty associated with the measurements. The uncertainty is described as the expected value of the correlation of the error in the model or the measurements. In order for the filter to remain consistent, the expected values of the correlation must be the covariance of the errors. This implies that the errors need to have a normal distribution. This is the mode of error that will maintain the relationship

\[
E(\varepsilon_i \cdot \varepsilon_j^T) = \sigma_i \ast \sigma_j
\]
\(3.13\)

where \(i\) and \(j\) represent the indices of the measurement state or system state depending on which matrix is being formulated. Taking this across the state space forms the covariance. A general assumption is that the uncertainty across states is uncorrelated, driving the off-diagonal terms of the covariance matrix to zero. What is left is a matrix where the diagonal elements are the variance of the state.

The uncertainty matrices are essentially the weights that are applied to the filter that determines the behavior\([10]\). The \(Q_k\) matrix is a description of the error if the system prediction is run open-loop. As time moves forward, small errors in the model will propagate and increase unbounded. The \(R_k\) matrix is associated with the error in the measurements and is used as in the gain of the
3.2.5 Redundant & Asynchronous Inputs

Because the Kalman filter is set up as a state space representation, the individual states are kept separate despite having an effect on one another. This affects the update stage in that the states that have measurements can be singled out and updated. There is also the benefit of updating a single state with multiple measurements. The gain function will assign appropriate weights to the corrections and the filter will automatically select the minimum error between the measurements and the predicted state.

The problem of asynchrony and redundancy open the problem of data timing. There is latency from the sensor to the filter. There is latency from the prediction to the update stage. The update may not happen fast enough. These all effect when data is assumed to be valid. Careful thought should be applied to the data structure of the platform if data is to be fused together.

3.2.6 Uses of the Filter

The Kalman filter has been in wide use for half of a century. Agrawal and Konolige [1] present the Kalman filter as a way to fuse visual odometry and an inexpensive GPS in order to provide a position. Their work seemed like more of a way to validate visual odometry than provide a position solution, but it is an excellent application of the Kalman filter. Aufrere, et al. [5] effectively used the Kalman filter in order to localize within a road. The prediction was traveling down the road and this was updated with measurements of the extent of the road.

The Kalman filter can also be used to provide localization in other schemes as well. By clever use of the Measurement Matrix, Leaonard and Durrant-Whyte [12] were able to use geometric beacons and an a priori map to position a mobile robot within a room. The IGVC team from Bluefield State College used a Kalman filter to combine two different position solutions together [14].
Chapter 4

Filter Design

The filter is designed to be flexible enough to be used in any situation. It keeps track of five states and allows measurements of these states to describe motion in a two-dimensional plane. This simple approach produces a remarkably solid result. This chapter will discuss the formulation of the filter, the features of this implementation, and the inputs and controls from the user end.

4.1 Filter Construction

The filter developed for this thesis takes advantage of the linear Kalman filter. It requires a little bit of effort from the end user, but the returns are a robust filter that can be applied to many environments. The linear Kalman filter takes the form described in section 3.2.2, reproduced below.
\[
X_k^- = \Phi_k X_{k-1}
\]
\[
P_k^- = \Phi_k P_{k-1} \Phi_k^T + \Gamma_k Q_k \Gamma_k^T
\]
\[
K_k = P_k^- H_k^T [H_k P_k^- H_k^T + R_k]^{-1}
\]
\[
X_k = X_k^- + K_k [Z_k - H_k X_k^-]
\]
\[
P_k = [I - K_k H_k] P_k^-
\]

4.1.1 Assumptions & Effects

In order for this to remain simple, some assumptions have been made. First, in order for the filter to remain in five measurement states, the assumption that the vehicle operates on a flat surface has been made. This assumption simplifies the governing model so that the computation and measurement of the states becomes simple and cost effective. Next the assumption that the data being brought in has been corrected to fit the filter parameters: The states are being measured and the error associated has a normal distribution.

The assumptions may not always be valid. When the assumptions are violated, how does this effect the output of the filter? If the flat plane assumption is violated, a pure dead reckoning system would not perform very well. Fortunately, the filter inoperates the position from the GPS. By doing this, the position is corrected to the actual location. The filter will then be able to gain the updates in order to compensate for some of this additional error.

The second assumption is a little harder to handle. The data needs to be in a form that matches the filter. A little bit of preprocessing and conversion makes the filter more universal and easier to use. The error distribution is inherent with the sensing device. The filter works on the assumption that the error is normally distributed, zero-mean with a standard deviation. For most cases this is
a valid assumption. Unfortunately, GPS error can not be characterized as normal. There is often a bias and this bias drifts with what satellites are visible and their location on the sky. The filter cannot compensate for this sort of error. The ultimate effect is that the filter will minimize the effect of the random content of the data, but the drift is unaccounted for and will be apparent in the output.

4.1.2 State Formulation

As previously mentioned, there are five states that the filter will carry between the predict and update phases. These states are the position in Easting and Northing (UTM measurements), the forward velocity, orientation, and rotational velocity, or symbolically in equation 4.1. These states were chosen because they line up with the most general sensing environments. The position is measured with respect to a global known, as is the orientation. This definition is congruous with most sensing platforms (e.g., GPS, compass). The velocities are measured with respect to the vehicle. It is a simple task to get these velocities with most odometry methods, not requiring conversion into a globally-referenced frame.

\[
x = \begin{bmatrix} P_{\text{Easting}} \\ P_{\text{Northing}} \\ V \\ \psi \\ \Omega \end{bmatrix}
\]

(4.1)

The filter will operate on the states in accordance with the associated covariance. The model will advance the position by using a linear estimate of the velocity. The measurements will update the states to correct the model.
4.1.3 Model - Predict Stage

The model is simple and based off of the assumption of a constant velocity. This assumption is, of course, not accurate. In terms of the performance, this error is not a problem because the updating of the filter will align the velocity state with the measured velocity. In addition, this gives an excellent way to describe the error of the model. Clearly, any acceleration will change the velocity, so the error term should be a function of the acceleration of the vehicle.

State

To start, we use the identity discussed above to fill one of the states.

\[V_k = V_{k-1} \]
(4.2)

This will be used to describe the velocity in the forward direction. This will give rise to the position by integrating with respect to time. This produces the equation

\[P_k = V_{k-1}\Delta t + P_{k-1} \]
(4.3)

where \(P \) is the position at timestep \(t \) and \(\Delta t \) is the time between steps. This is the vector equation, but the states that will be filled are the position in an \(XY \) plane and not the position vector. Rewriting the equation,

\[P_{x,k} = V_{k-1}\Delta t\cos(\psi_{k-1}) + P_{x,k-1} \]
(4.4)

\[P_{y,k} = V_{k-1}\Delta t\sin(\psi_{k-1}) + P_{y,k-1} \]
(4.5)

Here, \(\psi \) is the orientation of the vehicle. In order for the equations to be correct, the orientation must be measured counterclockwise from the \(X \)-axis.

The rotational orientation is derived in a similar manner. First, there is the rotational velocity,
subject to the same assumptions as the linear velocity.

$$\Omega_k = \Omega_{k-1} \quad (4.6)$$

Integrating with respect to time, the orientation is determined to be

$$\psi_k = \Omega_{k-1}\Delta t + \psi_{k-1} \quad (4.7)$$

Again, the orientation, as far as the filter is concerned, is measured from the X-axis, counterclockwise. It is easy to see that the range of the orientation is $[0, 2\pi)$, outside of this range it circles around. The filter does not allow for circular ranges such as this. The Structure section below will cover a way to fix this.

The equations need to fit into a transition matrix, Φ_k, so that it can be incorporated into the prediction phase of the Kalman filter as set up in equation 3.1. This can be done by inspection:

$$\Phi_k = \begin{bmatrix}
1 & 0 & \Delta t \cos(\psi_{k-1}) & 0 & 0 \\
0 & 1 & \Delta t \sin(\psi_{k-1}) & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & \Delta t \\
0 & 0 & 0 & 0 & 1
\end{bmatrix} \quad (4.8)$$

While this is truly not a linear equation, it is being modeled as a linear system for one instant of time at the current heading. The linear Kalman filter can be used provided that this holds true and if the measurements are linear relationships to the states.

Covariance

To predict the covariance as stated in equation 3.2, the only additional information needed is the error associated with the states. In this formulation of the filter, the Gamma matrix, responsible for
the transformation of error frames, is identity because all of the errors are measured in the same frame that the states are measuring. These errors are to be used as the relative weights for the filter to use. If there is a lot of error in the model, then the filter will tend to trust the measurements more. The reverse is also true. The error can never be modeled as zero because this will result in the state never updating. There needs to be some error in the model for the filter to be able to judge the new measurements, or advance the state prediction that is based on the old information.

The error in the model is incorporated into the state uncertainty matrix, Q_k. This matrix will be a diagonal matrix with the errors associated with the states in the diagonal elements. This is an assumption that the errors in the model are not associated with each other. While this may not hold true, if there are any relationships, these will be be in the transition matrix, Φ_k. This matrix will bring the relationships out and the filter will automatically account for the propagation of error. The state uncertainty will take the form

$$Q_k = \text{Diagonal} \begin{bmatrix} \sigma_{P_x}^2 & & & \\ & \sigma_{P_y}^2 & & \\ & & \sigma_{\text{Vel}}^2 & \\ & & & \sigma_{\Omega}^2 \end{bmatrix}$$

(4.9)

Equation 4.10 gives a more complete model for the state. Comparing this to equation 4.2, the difference is the addition of the acceleration terms and the error in the model, ε. This error is not random error. This is error in the model and can come from wheel slip, violation of the flat plane assumption, or influence of any other type.

$$V_k = V_{k-1} + \Delta t a + \varepsilon$$

(4.10)

Given that this is a time-tested model, the additional error should be low in relation to the other terms in the model. For this reason, the error in the velocity state will be primarily a function of the acceleration. The best way to model this error would be to have a measurement of acceleration to control the error, but this requires a measurement that could be included in the model if it were present. Therefore, the maximum acceleration is used as the basis for the error, giving the most
error possible. Given that there are other sources of error, they could be included by artificially increasing the acceleration, thus the error in the model.

\[\sigma_{Vel} = \Delta t a_{max} \] \hspace{1cm} (4.11)

By integrating once more, the position error can be defined. The position can be described as

\[P_k = P_{k-1} + V_{k-1} \Delta t + \frac{\Delta t^2}{2} a + \varepsilon \] \hspace{1cm} (4.12)

where again, the acceleration, \(a \), is the maximum acceleration that should be increased to compensate for other potential errors, \(\varepsilon \). Experimental results agree with Kelly that a \(g \) of acceleration is a good value for the \(a_{max} \)\[10\]. This may seem excessive, but it gives the right amount of error for the Kalman filter to use in the fusion of data.

\[\sigma_{px} = \frac{\Delta t^2 a_{max}}{2} \] \hspace{1cm} (4.13)
\[\sigma_{py} = \frac{\Delta t^2 a_{max}}{2} \] \hspace{1cm} (4.14)

The angular states are governed by similar physics, so the angular error will be very similar.

\[\sigma_{\psi} = \frac{\Delta t^2 \alpha_{max}}{2} \] \hspace{1cm} (4.15)
\[\sigma_{\Omega} = \Delta t \alpha_{max} \] \hspace{1cm} (4.16)

4.1.4 Measurement - Update Stage

To perform the operations delineated by the equations for the Kalman gain (equation\[3.3\]), the state update (equation\[3.4\]), and the covariance update (equation\[3.5\]), three more relationships need to be formed. These are the measurement model, \(z_k \), the measurement matrix, \(H_k \), and the measurement uncertainty, \(R_k \). In the case of asynchronous use, these matrices need to be constructed every time
in order to update only the proper stages.

Measurement Model

The measurement model is made up of the measurements that are available at the time. The order is not important if the measurement matrix and the measurement uncertainty are made to match. For instance:

\[
\mathbf{z}_k = \begin{bmatrix}
X_{GPS} \\
Y_{GPS} \\
V_{Encoder} \\
\psi_{Compass} \\
\Omega_{Encoder}
\end{bmatrix}
\]

These measurements could be provided by any number of sources, but the ones tested for the thesis were a GPS unit, digital compass, and wheel encoders. This filter can handle input from any sources, as long as they are measurements of the state. The rest of this section will assume that these are the sensors used, but the methodology can be extended to others as well.

Measurement Uncertainty

The measurement uncertainty is similar the the state uncertainty discussed earlier. It will provide the relative weights that the filter will use in order to determine which measurements to trust and whether to trust the model over these measurements. Like the measurement model, this matrix needs to be built every iteration based on the information available. The order of the entries should match the order in the measurement model. The measurement uncertainty will take the form

\[
\mathbf{R}_k = Diagonal \begin{bmatrix}
\sigma^2_{GPSx} & \sigma^2_{GPSy} & \sigma^2_{Encoder} & \sigma^2_{Compass} & \sigma^2_{Encoder}
\end{bmatrix}
\]

These error values are functions of the sensors themselves, so there is no specific formula. For
instance, most GPS units put a standard deviation in the position message. This would be the error given to the filter. The error for the compass is given by the manufacturer on the data sheet. The encoders are the only ones that need a little work. Generally, encoder error is modeled as a percentage of the measurement. In other words, the more the encoder has traveled, the greater the error. In this case, the error reported is 5% of the measurement.

Measurement Matrix

The measurement matrix, H_k is the keystone to the matrices involved in updating the estimate. This is what will transform the measurements into states. Each row will correspond to a measurement present in the measurement model and will relate this measurement to a state. This is how the filter handles data in any order, as well as how redundant data is controlled. The fundamental relationship is that

$$z_k = H_k x$$

(4.19)

For each measurement, the individual transfer function can be made and then they can be appended together to form the measurement matrix. In the presence of a GPS measurement (assumed to take the form $[Easting, Northing]$), the specific transform would be

$$H_{GPS} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{bmatrix}$$

(4.20)

This would assign the first GPS measurement to the first state, which is the x-axis position. The second GPS measurement would be aligned with the second state, or the y-axis measurement. Following this logic, the compass measurement $[heading]$ can be written as equation [4.21] and the
encoder \([V, \Omega]\) can be written as equation \(4.22\):

\[
\begin{align*}
H_{\text{Compass}} &= \begin{bmatrix} 0 & 0 & 0 & 1 & 0 \end{bmatrix} \\
H_{\text{Encoder}} &= \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \end{bmatrix}
\end{align*}
\]

(4.21)

(4.22)

Following the measurement matrix through the equations it is clear that this is the crux of the asynchronous operation. Because of \(H_k\), the gain and state update are only computed for the current measurements. Likewise, the covariance is only updated for the current measured states. This will allow the covariance to grow in the absence of measurements. This means that the prediction will add to the error until there is a measurement to update it. At this time, the covariance is updated to reflect the trust or distrust of the measurements.

4.1.5 Structure

Each cycle through the filter started with the prediction stage. This makes it less of a prediction and more of a way to advance the states to the current time step. This could be done at the end of the previous iteration, but at the current iteration, the time elapsed is known. The time interval is present in the transition matrix, so a more accurate time step can give a better estimation of the current state to begin the data fusion.

Speaking of the transition matrix, the matrix formulated in equation \(4.8\) is rather sparse. Rather than using the matrix multiplication, the state can be projected forward using the equations used to derive the matrix. This will use fewer operations and equate to a faster running of the filter. Similarly, since the covariance is only increasing along the diagonals, these values can be added and replaced rather than spending the time adding several zeros.

With the states brought to the current time, the update stage is performed. As stated previously, the measurement matrix, the measurement model, and the measurement uncertainty needs to be
constructed each cycle. This will update only the states that have measurement available at this time. The actual cycle time should be carefully considered with this in mind. If the cycle rate is too fast with respect to the measurements, the model will continually increase the covariance so that when a measurement is available, the error seems relatively low, even if it is highly inaccurate. On the other hand, if the cycle time is too slow with respect to the measurements, the data available may be describing the state at an old time. Balancing the cycle time is something that is left to the user, but it should not be faster than the fastest measurement and should not be slower than the slowest measurement.

More so than the cycle time, the errors also effect performance of the filter. The tuning of the errors is an important part of using the Kalman filter. Just as the distinction was made between the optimal and accurate estimate, there needs to be a distinction between optimal and desired output. The goal of this filter is to provide an accurate and drivable estimate of position. This may not be the statistically optimal estimation. In order to control the output, modifications may need to be made to the input to deliver a desirable estimate. This filter provides the user with a simple and functional way to control the inputs to achieve the desired behavior.

Finally, there is an issue with the heading. In real life, three rights can make a left. The Kalman filter is not prepared to handle this looping behavior. In order to take a left turn from a heading of 10 degrees (on a compass) to 300 degrees, the filter has to travel down the number line, effectively taking three rights. This may not be congruous with the rotational velocity information and can cause erratic behavior. For this reason, every operation that involves the heading should be checked to make sure it is in the proper domain. With this in place, as the encoders are making a left turn, the filter is predicting a heading that is looped over to the beginning and when the update stage comes around, the measured heading reinforces the predicted heading that otherwise would appear as a jump.
4.2 Filter Features

This filter offers a few features in addition to those inherent with the Kalman filter. Those are also applicable, so this filter handles redundant, asynchronous data very well. There are a couple other perks programmed into the filter to make it easier for the user to plug in and go.

4.2.1 Self-Control

The filter monitors its own status and acts accordingly. At startup, the filter waits for all of the sensors before operating. This gives two advantages. If the user does not specify an initial position, the first reading is used to fill the states for initialization. Second, it makes sure that the sensors the users are expecting are present. The filter could continue without the input and the covariance would simply diverge. If the user is not monitoring this, the output would be treated as credible when in reality, there is no measurement to correct the state.

During operation, if there are no inputs available, it alerts the user. If there are no inputs for a length of time, it pauses the filter. This prevents the divergence that would cause a loss of solution. If there is a long pause, it returns to its initialization state to start over. A reset will also be triggered if the covariance diverges. This would come about if one of the sensors failed and did not restart itself. If the measurement is redundant, then the divergence would not happen, but the covariance would change to the new, presumably larger, error.

The filter also has a biasing functionality. If there is a suspected bias, the user can flag the sensor as biased and at startup, the sensor will be read to determine the bias. This bias is determined by averaging the sensor readouts and comparing this to the known state. If the state is not known, there can be no bias calculation. The bias calculation is complete when the average ceases to deviate (by a threshold percentage) with new measurements.
4.2.2 Dynamic Error Adjustment

The Dynamic Error Adjustment (DEA) is a function that monitors the state and the measurement and alters the measurement error if there is a significant difference. Used primarily as “Pop protection,” it can sense when one of the sensors is off base and make it so that the filter sees it as a spurious point. Normally, the filter would handle data movement just fine, provided it is within the error reported to the filter. When the sensor and the state disagree by more than the errors allow, large jumps, or “pops,” can occur.

When the difference between a measurement and the state prediction is outside of a user-defined threshold, the DEA is triggered. At this point the error associated with the measurement is changed following the function

$$\sigma_{Adjusted} = Ae^{-\tau \Delta t} \times \sigma_{reported}$$

(4.23)

where A is the magnitude of adjustment, τ is the time constant of the error modification decay, and Δt is the time since the pop was detected. The threshold, magnitude, and time constant are all user controlled. When the magnitude is greater than unity, the error is increased. This will cause the filter to regard the input as an inaccurate input. The measurement is still incorporated into the output, but its weight is relatively low. If the magnitude is less than unity, then the error will be decreased. This will have the opposite effect. Instead of acting as pop protection, it will promote a pop. The output will trust the measurement more than it would otherwise, bringing the output of the filter closer to that measurement, often creating a discontinuity in the output.

The user inputs to this feature, along with the option to turn it on or off, can be saved to a configuration file that holds the filter parameters. Also included in the file are static error gains, sensor identification, and bias information. These can be written and loaded from the filter interface.
4.2.3 Interface

This filter is meant to be easy to use, so the interfacing was streamlined to contain all the pertinent information. The data input, the error modifications, and the filter output are handled in LabVIEW as arrays of clusters. The filter will operate on these arrays to arrive at the final output.

The output of the filter is an array of clusters containing: the measurement, a description of the measurement, the error associated (via the standard deviation output from the covariance), if the measurement was corrected (updated) this cycle, and weather the value has popped. Figure 4.1 shows an example output.

![Filter output is in a LabVIEW array.](image)

Measurement Input

To bring data to the filter, implementation is simple. Each measurement needs to have a cluster like the one depicted in figure 4.2. The first field is the type of measurement. These measurements
are direct measurements of the states, so the options are the same as the states listed above. The second field is a flag for new measurements. If it is valid, then it is a new measurement and passes any other checks the user may have to validate the data. The third field is the measurement itself and is in Standard units. The fourth field is the error. This should be the standard deviation of the measurement and is a function of the sensor. The fifth field is the source of the measurement. This designation is for the error modification discussed in the next section.

![Figure 4.2: Input cluster for filter in LabVIEW.](image)

Error Control

The control for the Dynamic Error Adjustment is handled similarly to the measurement input. The cluster for the error modification is shown in figure 4.3. This will control the passive error gain in addition to the active error system. This gives one place for the user to tweak in order to get the desired performance.

![Figure 4.3: Error modification control cluster.](image)

The first field is the sensor name. This is the reference that will link the error modifications to the proper measurement. The field to the right of that is the flag for a biased measurement. If the bias calculator is selected for the startup, only the measurements marked as biased will be adjusted.
with the converged bias found in the beginning. Below that is the field for the error gain. This is a multiplicative gain applied to the error reported by the sensor. The right side of the cluster is devoted to the controls of the Dynamic Error Adjustment. This enables the function and sets the mathematical parameters for the decaying of the error gain. In addition, the threshold to trigger the adjustment can be altered to define what classifies as a measurement pop. All of this information can be read from or saved to a configuration file for later use.

Other Inputs

In addition, there are other inputs that can be used to control the performance of the filter. These are the inputs for the initial state and the system errors. If the initial state is unknown, the filter will automatically assign a high error to the prediction so that the subsequent updates strongly influence the filter output. If a bias is to be computed, the initial state must be known.

The other input is the system errors. The user can input the maximum acceleration of the vehicle to be included in the model errors. If this does not result in the desired performance, there are error gains that adjust each of the states individually. For each vehicle, these will have different values. These could also change if the operating conditions change. For best performance, these should be adjusted whenever the model of the system may have different error than the nominal case.
Chapter 5

Results

In order to gage the effectiveness of the filter, a comparison needs to be made to the true position of the vehicle. This section presents a graphical representation of the results and a discussion of the performance of the filter. In order for the results to be significant, the filter should improve upon both the positioning solution and the odometry provided. In short, the combination should be a better solution that the individual parts.

Because the true position may never be known, the reference that will be used is the Novatel position solution with the OmniStar HP corrections. This solution can yield results that have a CEP of 10 cm. This highly accurate position will be regarded as the true position. The filter has been assembled as discussed in chapter 4. The control parameters that were used were all the same as discussed in that chapter and all of the individual gains were set to unity, save the U-Blox, which was set to a gain of 7.

In all of the plots presented, there will be several lines representing the different solutions. In each presentation, the green line will be the Novatel solution which is treated as the reference.
The data provided to the filter is shown by the red and blue lines, signifying the U-Blox and the Encoder input respectively. The encoder input is actually in velocities so there is not a good way to display this clearly. Instead, the Blue line is the Dead Reckoning solution run open loop. Finally the filter output is shown in white.

5.1 Straight Line

To begin, the simple case of traveling a straight line is considered. With no information, the filter is forced to start with an estimate provided by the initial measurements, but this initialization is regarded as highly suspect and is assigned a lot of error. Running the filter in this manner generates the output depicted in figure 5.1.

![Figure 5.1: Straight line data with no known starting point. Filter is forced to trust U-Blox position information hence the drift and non-returning path.](image)
Notice how the output of the filter drifts to the U-Blox position. If the initial position is known, the filter has something to trust and base the output on. Figure 5.2 is the output of the same data with a known initial position. The fact that the position is known lowers the error and allows the filter to weight the U-Blox information less.

Figure 5.2: Straight line data with a known starting point. Filter is able to converge on the known position so the U-Blox position data is used less and the path closely resembles the actual path.

Figure 5.3 shows a graph of the errors of the sensors and the filter over the length of the run. Error is defined by the distance from the reported position to the actual position given by the Novatel Propak. In this trial, the Dead Reckoning is a fairly accurate estimate of the true position. This is to be expected for short, simple paths. The filter does not deviate from the odometry inputs, correctly weighting the model (DR) advancement as more reliable than the measurement (U-Blox).
Figure 5.3: Straight line path errors. The red line is the U-Blox error, the blue line is the DR error, the white is the filter error. The filter and the DR error are fairly close and always within a meter of the true position.

5.2 Curve & Return

To test the filter a little further, a turn is thrown in to highlight some of the fusion advantages. The path this time is still an up and back motion, but there is a right turn involved to increase the complexity. The path and resulting output is shown in figure 5.4. The odometry appears to drift off course, but in the return path, the drift is equal, so the blue path returns to where it started, as does the true path. While the Dead Reckoning drifts on the curve, the GPS seems to bring the filter in line with the true path for a near overlay of the driven path. It should be noted, that the GPS signal by itself has the same trend as the true path, but the actual values are nearly unusable for any sort of navigation algorithm.

The errors in figure 5.5 tell the same story. Both the Dead Reckoning and the filter show low errors over the course of the driven path. The U-Blox is clearly in error, but corrects the filter position to be along the true path.
Figure 5.4: Curve & return path. The filter is able to fuse the odometry and the GPS to produce an output that is close to the actual path throughout the run.

Figure 5.5: Curve & return error. The errors are low for the odometry and the filter again, but the curved portion is more closely tracked by the filter.
5.3 Long & Complex

To investigate the effects of the GPS correcting the filter further, a longer, more complex route is needed. Figure 5.6 is the output from a two minute run of nearly 100 meters. In this trial, longer distances and sharp turns wreak havoc on the accuracy of the Dead Reckoning. The U-Blox is outputting a signal that is related to the reference path, but is not nearly as distinguishable with the limited resolution and refresh rate. The filter combines these two pieces of information together to produce an output that corresponds closely to the Novatel output.

![Figure 5.6: Complex path. Drift in the DR output is clearly a problem. The filter is able to fuse the odometry and the U-Blox into a path that follows the true path closely.](image)

The errors, figure 5.7 seem to describe the same thing. It should be noted that the reference path was within the error ellipse produced by the filter (the ellipse formed by the standard deviation in the Easting and Northing output). This error ellipse changes in size depending on the inputs to
the filter, but generally it was circular with a two meter radius. The large error in the beginning of
the operation is due to the Novatel acquiring a position fix. While the fix was being acquired, the
last position read was still in the register, so these initial errors are not in reference to the current
position.

Figure 5.7: Complex path error. The filter has the lowest error, with a maximum deviation from
true of two meters.
5.4 Dynamic Error Adjustment

To explain the use and to demonstrate the effects of the Dynamic Error Adjustment (DEA), consider the output in figure 5.8. This shows the output for another long and curvy path. This time, however, the GPS positions provided by the U-Blox are significantly off from the true path. The error reported by the U-Blox does not account for the large discrepancy. As a result, the filter tries to minimize the error between the prediction and the U-Blox data and it results in a discontinuity in the path.

![Figure 5.8: Path with no pop protection. Notice the jagged curves and the discontinuity at Easting: 495312 m, Northing: 3229002 m.](image)

These discontinuities are undesirable when relying on a consistent, drivable position solution. In figure 5.8 these discontinuities, or “pops,” can be seen where the path is broken or in the turns, where it appears that the path is displaced segments as opposed to a continuous curve. The DEA
will monitor the input in reference to the prediction. If the input is outside of a threshold, in this case two meters, a pop is triggered and the error is inflated, as discussed in chapter 4.

Figure 5.9 shows the path with the DEA enabled and used as pop-protection. The U-Blox input is not ignored, so the correction is still being used, but the error is inflated so that when the filter tries to resolve the difference, the prediction is weighted heavier, resulting in a more continuous output. The drifting effects if the encoder input will have a greater effect, so the accuracy may be reduced. This reduction in accuracy is not nearly as much if the pops are taken as credible information. As time progresses, the error augmentation factor decays, so that the U-Blox will be given the standard weight again.

Figure 5.9: Path with pop protection. Path is smooth and does not have the large discontinuity.
Chapter 6

Conclusion

This thesis has presented a filter that can take in common measurements associated with a navigation algorithm and output a drivable and reliable position solution. This solution is a combination of the available measurements in a way that minimizes the mean square error by use of the Kalman filter. The net result is an approach that is more accurate over long distances and higher refresh rates than the individual components alone.

Furthermore, the filter was designed to be a modular piece of software applicable to any unmanned system. The input states are common measurements that are used in navigation and operation of autonomous systems, so the additional requirements for a system to use this filter are low. The advantage of using the filter would be to achieve higher refresh rates and a more consistent output that could be achieved by the sensors alone. The user has only a few inputs to tweak in order to have complete control of the filter output behavior.
6.1 Summary of Results

Experiments were conducted using a test platform developed by Virginia Tech for an autonomous vehicle competition, Johnny-5. Using the on board sensors and an inexpensive GPS unit for input, Kalman filtering fused the data in an optimal way that improved the output of the sensory data.

The data behaved as expected. The velocities integrated over time with no correction proved accurate over the short term, but as the paths got longer and more complex, the error accrued and the output was unusable as a position solution. The GPS was also typical. An instantaneous solution from the GPS is not regarded as highly accurate, but over time, the average is a credible representation of the position.

The Kalman filter was able to combine the data in a way that took advantage of both of these inputs. The encoders were used to predict the position forward and this was corrected by the GPS position fix. This produced a result that was updated faster than the GPS provides position information and was accurate within a standard deviation of the filter; about two meters.

6.2 Future Work

The work presented here could be easily expanded to include other sensors and further work in data fusion could be accomplished. In addition there may be a better way of accounting for non-gaussian error in the model and measurement inputs. There are also additional features that could be explored to improve the performance of the filter.

6.2.1 Additional Sensors

The Kalman filter is adept at incorporating redundant information and resolving the errors to output a single estimate. For this reason, additional sensors could prove a useful tool in establishing a position if another sensor has failed or even to improve the accuracy of the available output.

Accelerometers and gyroscopes are excellent ways of gathering rotation and acceleration infor-
mation. They offer the benefit of vehicle-centered measurements that integrate to get data for the sensor. The technology to fabricate these sensors inexpensively has made great strides in recent years and they are a valid option for velocity inputs.

Vision has been explored as a way of finding landmarks and deriving a position from these perceived landmarks by comparing them to an *a priori* map. This could be another position solution that would not be biased with the atmospheric condition. Other methods of localizing through mapping (Simultaneous Localization and Mapping - SLAM) can be incorporated as well.

Optical flow, or motion derived from sequential video frames, can be used as a way to detect velocities. The cost of accelerometers and gyroscopes are decreasing rapidly. As they become more common and accessible, there could be other sources of accurate speed and acceleration information.

6.2.2 GPS Bias Correction

GPS solutions have the problem of drifting around in the short term. This drift is not a constant factor, so a constant bias would not be useful here. This is why the differential corrections are so popular and required for accurate returns. There may be a way of establishing a bias detection while in motion. This could effectively be a differential correction applied to the GPS measurement. This could not be done with respect to the filter, because then the GPS data would simply reinforce the filter and offer no new correction. Instead it would need some other reference.

6.2.3 Zero-Velocity Update

When the vehicle is at rest, the position should not move. This could be a time to recover some error in the filter due to drift or reevaluate the errors assigned to the measurements. This process runs into a similar problem as the bias correction in that it needs an absolute reference. If the vehicle has stopped over a known location, this location could be provided with a low error associated to it. This would cause the filter to drift toward the new accurate measurement. The filter could be
reset with this known position as the starting point. Whatever the approach, the goal would be to use the zero velocity state to trigger an update to the position and the reduction of the error.

6.2.4 Additional Suggestions

This filter was designed to be generic. If a non-generic filter is desired, the filter could be reformulated in part or whole. For instance, instead of the velocities, the actual encoder measurements could be taken into the filter as measurement states. The measurement matrix would need to be changed, but this would allow the measurements to be compared to the velocity and information about wheel slip could be deduced while the filter is operational.

This monitoring of states is not necessarily part of the Kalman filter, but the filter lends itself very well to this idea. These derived errors, the difference between the measurement and the model, could be used in the model. In the Dynamic Error Adjustment, the error of the measurement with respect to the model was monitored and adjusted accordingly. A similar process can take place with the system errors. The states can be monitored from step to step and this can be used in determining the model uncertainties. This would give a dynamic change in the prediction states that could improve performance over a wider range of operating parameters.
References

Appendix A
Position-Velocity Example

To see the Kalman filter working, a simple example of a point along a line is considered.

A.1 Filter Formulation

The point will cove a long the line so that at ever time interval of one second ($\Delta t = 1$ sec.) it will be at the next unit of measure, giving it a velocity of 1 unit/second. In this example the measurements will be exactly known, and the measurement matrix will be complete at every iteration. While it does not matter for this contrived example, it should be noted that the prediction stage will be performed first as a way to bring the states to the current time (as discussed in Chapter 4). The update stage will occur after to update the states in light of the new data available. This example will use the Linear Kalman Filter equations:

$$
X_k^- = \Phi_{k-1} X_{k-1}
$$

$$
P_k^- = \Phi_k P_{k-1} \Phi^T_k + \Gamma_k Q_k \Gamma^T_k
$$

$$
K_k = P_k^- H_k^T [H_k P_k^- H_k^T + R_k]^{-1}
$$

$$
X_k = X_k^- + K_k [Z_k - H_k X_k^-]
$$

$$
P_k = [I - K_k H_k] P_k^-
$$
The first step in any state space model is to define the states. In this simple example, the definition is simple enough; there will be two states. Also, the states will be the same as the measurements, defined as

\[X = Z = \begin{bmatrix} \text{Position} \\ \text{Velocity} \end{bmatrix} \]

The model of the system can be represented by the equations

\[
X_{k+1} = X_k + \Delta t V_k \\
V_{k+1} = V
\]

where \(X \) is the position and \(V \) is the velocity. The position is simply the displacement due to velocity added to the current position. Because there is no better model for the velocity, the velocity is assumed constant. This model can be written into the transition matrix by inspection:

\[
\Phi_k = \begin{bmatrix} 1 & \Delta t \\ 0 & 1 \end{bmatrix}
\]

Each step through the filter, the position and velocity will be perfectly known. This means that the measurement matrix is the identity matrix. In addition for this example, the state and measurement error will be the same. Lastly, because these are direct measurements, the Gamma matrix (used to bring the errors into a common frame) is also identity.

\[
\Gamma_k = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad Q_k = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad R_k = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad H_k = \begin{bmatrix} 1 & 0 \end{bmatrix}
\]

For additional trials on the same system, see Appendix A.3. These are tables of the output for varying \(Q \) and \(R \) as well as introducing error into the measurements.

A.2 Filter Steps

Step 0

The first thing to do is to initialize the filter. It can be seen that the only thing that is carried in the filter from step to step is the state and covariance matrix. These are what need to be initialized. Figure A.1 shows the actual initial position. We can establish the initial conditions at a state fairly arbitrarily. Because we are just guessing on the initial state, we will indicate that we are not confident with this estimate by also giving it a high variance in the covariance matrix.
Step 1

One second has passed and the measurements have been made. First thing to do is to use the model to bring the state to the current time. This is done with the first two equations of the Linear Kalman Filter.

\[
X_k^- = \Phi_k X_{k-1} \\
= \begin{bmatrix} 1 & \Delta t \\ 0 & 1 \end{bmatrix} \begin{bmatrix} X_0 \\ V_0 \end{bmatrix} \\
= \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \\
X_1^- = \begin{bmatrix} 0 \\ 0 \end{bmatrix}
\]
This appears to be a trivial step, but is needed to bring the prediction in line with the current step. Next, Updating the covariance matrix:

\[
P_k^- = \Phi_k P_{k-1} \Phi_k^T + \Gamma_k Q_k \Gamma_k^T
\]

\[
= \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 100 & 0 \\ 0 & 100 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}
\]

\[
P_1^- = \begin{bmatrix} 201 & 100 \\ 100 & 101 \end{bmatrix}
\]

It seems that the variance has only gotten worse! This is to be expected. There have been no measurements to correct the prediction. Remember, the covariance was initialized with a high covariance so that the filter will naturally trust the first measurement. Here you can also see the off-diagonal terms of the covariance matrix propagating. This is happening because the state model indicates that the two states are in fact related. The effect is that the variance of the velocity is going to have an effect on the position state calculations, and vice-versa.

The update stage will take the current measurements and incorporate them into the filter output. First, the measurements in the matrix form are:

\[
Z_1 = \begin{bmatrix} \text{Position} \\ \text{Velocity} \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}
\]

The Kalman gain is computed based on the predicted covariance, \(P_k^- \); the measurement matrix, \(H_k \); and the measurement error, \(R_k \).

\[
K_k = P_k^- H_k^T [H_k P_k^- H_k^T + R_k]^{-1}
\]

\[
= \begin{bmatrix} 201 & 100 \\ 100 & 101 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 201 & 100 \\ 100 & 101 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}^{-1}
\]

\[
= \begin{bmatrix} 201 & 100 \\ 100 & 101 \end{bmatrix} \begin{bmatrix} 0.0066 & -0.0032 \\ -0.0032 & 0.0066 \end{bmatrix}
\]

\[
K_1 = \begin{bmatrix} 0.9903 & 0.0094 \\ 0.0094 & 0.9809 \end{bmatrix}
\]

Notice that with the large covariance, the Kalman Gain is close to unity along the diagonals. This will have the effect that the filter elects to trust the incoming data (with a lower uncertainty) over the existing prediction of the state. Now, with the Kalman Gain computed, we can update the
state with the measurements

\[
X_k = X_k^- + K_k [Z_k - H_k X_k^-]
\]

\[
= \begin{bmatrix} 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0.9903 & 0.0094 \\ 0.0094 & 0.9809 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} - \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix}
\]

\[
X_1 = \begin{bmatrix} 0.9998 \\ 0.9903 \end{bmatrix}
\]

The Kalman Gain is also integral to the computation of the covariance update.

\[
P_k = [I - K_k H_k] P_k^-
\]

\[
= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} 0.9903 & 0.0094 \\ 0.0094 & 0.9809 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 201 \\ 100 \\ 100 \\ 101 \end{bmatrix}
\]

\[
P_1 = \begin{bmatrix} 0.9903 & 0.0094 \\ 0.0094 & 0.9809 \end{bmatrix}
\]

This highlights an interesting feature, that if \(Q = R = I \), then the covariance matrix is the same as the Kalman Gain. This is indicative of how error modeling directly effects the size of the covariance and the overall behavior of the filter. \(Q \) dictates the rate at which the covariance will diverge (or the error expands) and \(R \) controls how strongly the measurement is used in the update and how the covariance is reduced. Both \(Q \) and \(R \) are in units of the measured parameter, which is important because it is the relative magnitude with respect to the covariance that determines the effect.

The states and error can be seen in figure A.2. The actual state is represented in black, the predicted state in blue, and the updated state in red. The standard deviation of the respective stages is shown as intervals on the number line.
Step 2

The steps through time do not effect the structure of the filter, so the process is the same as before: predict then update. First, advancing the state through time.

\[X^{-}_k = \Phi_k X_{1-1} \]
\[= \begin{bmatrix} 1 & \Delta t \\ 0 & 1 \end{bmatrix} \begin{bmatrix} X_1 \\ V_1 \end{bmatrix} \]
\[= \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0.9998 \\ 0.9903 \end{bmatrix} \]
\[X^{-}_2 = \begin{bmatrix} c1.9902 \\ 0.9904 \end{bmatrix} \]

The next step is to predict the covariance.

\[P^{-}_k = \Phi_k P_{k-1} \Phi_k^T + \Gamma_k Q_k \Gamma_k^T \]
\[= \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0.9903 & 0.0094 \\ 0.0094 & 0.9809 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \]
\[P^{-}_2 = \begin{bmatrix} 2.9901 & 0.9903 \\ 0.9903 & 1.9809 \end{bmatrix} \]

With the predictions at the current time step, the measurements can correct the states. First is
the Kalman Gain:

\[K_k = P_k^{-1} H_k^T [H_k P_k^{-1} H_k^T + R_k]^{-1} \]

\[K_2 = \begin{bmatrix} 0.7268 & 0.0907 \\ 0.0907 & 0.6343 \end{bmatrix} \]

The state is corrected with the measurements.

\[X_k = X_k^- + K_k [Z_k - H_k X_k^-] \]

\[X_2 = \begin{bmatrix} 1.9981 \\ 0.9973 \end{bmatrix} \]

Finally, the uncertainty is corrected as indicated by the covariance.

\[P_k = [I - K_k H_k] P_k^- \]

\[P_2 = \begin{bmatrix} 0.7268 & 0.0907 \\ 0.0907 & 0.6343 \end{bmatrix} \]

The updated position has more error (with respect to the true position) than the last time step. This is has to do with the uncertainty assigned to the measurement and model. The model is based off of the current state estimate, so the errors in the state have propagated to the current estimate. This error will soon decrease as the filter is run through time. This settling through time is called convergence.
Step 3

The computations are exactly the same as the previous steps, using the corrected state and covariance from step 2 in the prediction. Numerical values are tabulated in table A.1 for the predicted and updated state and covariance, as well as the measurement and the gain.

Step 4

The iteration of the filter is carried on once more. Both the position and velocity are steadily converging on the measured values and the true state.
Step 5

The fifth step of the filter through time is the same process as before. Predict to advance the state and correct the prediction with the measurements. After only five steps, the filter has nearly converged to the true state.

Figure A.5: Time t = 4 sec.

Figure A.6: Time t = 5 sec.
A.3 Tabulated Position-Velocity Outputs

These are the results from several trials of the Position - Velocity example under different conditions. They all follow the structure delineated in the preceding sections. The result are presented in tabular form along with the parameters and a plot of the error produced by the filter. For these examples remember that the model is actually a perfect representation of the system. Any error in the measurements is taken from the true value of the position and velocity and added random errors of the magnitude indicated.

A.3.1 Q=R, Error = 0

This trial has the same operating conditions as the example above. Notice the convergence to the true value in figure A.7. This happens because there is no knowledge of the initial conditions. The deviation from the true value is small (the scale on the update stage shows a peak error less than 0.002) because of the assumption that the initial values are in error, but the filter still responds to the change in states by minimizing the error, smoothly bringing the prediction in line with the measurements.

\[
Q = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad R = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad \text{Error} = 0\%
\]

![Figure A.7: Filter error. Prediction stage error (left) and update stage error (right). The filter error is in black, the measurement error is in blue.](image_url)
Table A.1: Filter Summary - Inputs perfectly known, Q=R

Step	Predict Stage		Update Stage			
	State	Covariance	Input	Kalman Gain	State	Covariance
0	0.0000	100.00	0.0000	0.0000	0.9903	0.0000
	0.0000	100.00	100.00	0.0000	0.9903	0.0094
1	0.0000	201.00	100.00	1.0000	0.9903	0.0094
	0.0000	100.00	101.00	0.9903	0.9903	0.9809
2	1.9901	2.9901	0.9903	2.0000	0.7268	0.0907
	0.9903	1.9809	0.9903	0.9903	0.9903	0.9809
3	2.9955	2.5427	0.7251	3.0000	0.7008	0.0823
	0.9973	1.6343	0.9903	0.9903	0.9903	0.9809
4	3.9981	2.4632	0.6800	4.0000	0.6956	0.0796
	0.9993	1.5977	0.9973	0.7251	0.7008	0.0823
5	4.9993	2.4491	0.6738	5.0000	0.6945	0.0793
	0.9998	1.5941	0.9973	0.6800	0.6956	0.0796
6	5.9998	2.4471	0.6732	6.0000	0.6944	0.0793
	0.9999	1.5939	1.0000	0.6732	0.6944	0.0793
7	6.9999	2.4469	0.6732	7.0000	0.6943	0.0793
	1.0000	1.5938	1.0000	0.6732	0.6943	0.0793
8	7.9999	2.4469	0.6732	8.0000	0.6943	0.0793
	1.0000	1.5938	1.0000	0.6732	0.6943	0.0793
9	9.0000	2.4469	0.6732	9.0000	0.6943	0.0793
	1.0000	1.5938	1.0000	0.6732	0.6943	0.0793
10	10.0000	2.4469	0.6732	10.0000	0.6943	0.0793
	1.0000	1.5938	1.0000	0.6732	0.6943	0.0793
A.3.2 Q > R, Error = 0

In this trial, the model is given more uncertainty than the measurements. In this case, this makes sense. The measurements are perfect, but the model is operating on the filtered state, which may be in error if the initial conditions are not set. Notice how the error in the filter output converges faster than in the previous case and the peak error is less too. This is a direct result of modeling the errors in a more correct manner.

\[Q = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}, \quad R = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad Error = 0\% \]

Figure A.8: Filter error. Prediction stage error (left) and update stage error (right). The filter error is in black, the measurement error is in blue.
Table A.2: Filter Summary - Inputs perfectly known, Q>R

<table>
<thead>
<tr>
<th>Step</th>
<th>Predict Stage</th>
<th>Update Stage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>State</td>
<td>Covariance</td>
</tr>
<tr>
<td>0</td>
<td>0.0000</td>
<td>100.00</td>
</tr>
<tr>
<td>1</td>
<td>0.0000</td>
<td>202.00</td>
</tr>
<tr>
<td></td>
<td>0.0000</td>
<td>100.00</td>
</tr>
<tr>
<td>2</td>
<td>1.9902</td>
<td>3.9902</td>
</tr>
<tr>
<td></td>
<td>0.9905</td>
<td>0.9905</td>
</tr>
<tr>
<td>3</td>
<td>2.9964</td>
<td>3.6298</td>
</tr>
<tr>
<td></td>
<td>0.9980</td>
<td>0.7882</td>
</tr>
<tr>
<td>4</td>
<td>3.9989</td>
<td>3.5928</td>
</tr>
<tr>
<td></td>
<td>0.9996</td>
<td>0.7696</td>
</tr>
<tr>
<td>5</td>
<td>4.9999</td>
<td>3.5894</td>
</tr>
<tr>
<td></td>
<td>0.9999</td>
<td>0.7683</td>
</tr>
<tr>
<td>6</td>
<td>5.9999</td>
<td>3.5891</td>
</tr>
<tr>
<td></td>
<td>0.9999</td>
<td>0.7682</td>
</tr>
<tr>
<td>7</td>
<td>6.9999</td>
<td>3.5891</td>
</tr>
<tr>
<td></td>
<td>1.0000</td>
<td>0.7682</td>
</tr>
<tr>
<td>8</td>
<td>7.9999</td>
<td>3.5891</td>
</tr>
<tr>
<td></td>
<td>1.0000</td>
<td>0.7682</td>
</tr>
<tr>
<td>9</td>
<td>9.0000</td>
<td>3.5891</td>
</tr>
<tr>
<td></td>
<td>1.0000</td>
<td>0.7682</td>
</tr>
<tr>
<td>10</td>
<td>10.000</td>
<td>3.5891</td>
</tr>
<tr>
<td></td>
<td>1.0000</td>
<td>0.7682</td>
</tr>
</tbody>
</table>
A.3.3 $Q < R$, Error = 0

This trial shows what happens when the error is modeled improperly. The measurements are perfect, but the filter sees less uncertainty in the model. For this reason it trusts the prediction over the measurements and the error converges to zero more slowly.

$$Q = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad R = \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix}, \quad Error = 0\%$$

Figure A.9: Filter error. Prediction stage error (left) and update stage error (right). The filter error is in black, the measurement error is in blue.
Table A.3: Filter Summary - Inputs perfectly known, $Q < R$

<table>
<thead>
<tr>
<th>Step</th>
<th>Predict Stage</th>
<th>Update Stage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>State</td>
<td>Covariance</td>
</tr>
<tr>
<td>0</td>
<td>0.0000</td>
<td>100.00 0.0000</td>
</tr>
<tr>
<td></td>
<td>0.0000</td>
<td>0.0000 100.00</td>
</tr>
<tr>
<td>1</td>
<td>0.0000</td>
<td>201.00 100.00</td>
</tr>
<tr>
<td></td>
<td>0.0000</td>
<td>100.00 101.00</td>
</tr>
<tr>
<td>2</td>
<td>1.9802</td>
<td>5.9506 1.9803</td>
</tr>
<tr>
<td></td>
<td>0.9811</td>
<td>1.9803 2.9258</td>
</tr>
<tr>
<td>3</td>
<td>2.9890</td>
<td>4.5966 1.4044</td>
</tr>
<tr>
<td></td>
<td>0.9935</td>
<td>1.4044 2.1086</td>
</tr>
<tr>
<td>4</td>
<td>3.9940</td>
<td>4.2725 1.2489</td>
</tr>
<tr>
<td></td>
<td>0.9976</td>
<td>1.2489 1.9607</td>
</tr>
<tr>
<td>5</td>
<td>4.9970</td>
<td>4.1739 1.2073</td>
</tr>
<tr>
<td></td>
<td>0.9993</td>
<td>1.2073 1.9322</td>
</tr>
<tr>
<td>6</td>
<td>5.9986</td>
<td>4.1460 1.1981</td>
</tr>
<tr>
<td></td>
<td>0.9999</td>
<td>1.1981 1.9273</td>
</tr>
<tr>
<td>7</td>
<td>6.9994</td>
<td>4.1391 1.1965</td>
</tr>
<tr>
<td></td>
<td>1.0000</td>
<td>1.1965 1.9265</td>
</tr>
<tr>
<td>8</td>
<td>7.9998</td>
<td>4.1377 1.1963</td>
</tr>
<tr>
<td></td>
<td>1.0000</td>
<td>1.1963 1.9264</td>
</tr>
<tr>
<td>9</td>
<td>8.9999</td>
<td>4.1375 1.1963</td>
</tr>
<tr>
<td></td>
<td>1.0000</td>
<td>1.1963 1.9264</td>
</tr>
<tr>
<td>10</td>
<td>10.0000</td>
<td>4.1374 1.1963</td>
</tr>
<tr>
<td></td>
<td>1.0000</td>
<td>1.1963 1.9264</td>
</tr>
</tbody>
</table>
A.3.4 Q=R, Error = 0.1

This trial switches the thinking from the previous three trials. Now the filter has to deal with error in the measurement. With the uncertainties equal, the filter uses the prediction to essentially smooth out the measurements. The large spikes in the measurement error are lessened and the overall uncertainty is decreased.

\[Q = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad R = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad Error = \pm 10\% \]

Figure A.10: Filter error. Prediction stage error (left) and update stage error (right). The filter error is in black, the measurement error is in blue.
Table A.4: Filter Summary - Inputs ± 10%, Q=R

| Step | Predict Stage | | | Update Stage | | |
|------|--------------|----------------|----------------|----------------|----------------|
| | State | Covariance | Input | Kalman Gain | State | Covariance |
| 0 | 0.0000 | 0.0000 100.00 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| | 0.0000 | 0.0000 100.00 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| 1 | 0.0000 | 201.00 100.00 | 1.0411 | 0.9903 | 0.0094 | 1.0402 |
| | 0.9701 | 0.0094 98.09 | 0.9614 | 0.0094 | 0.9809 | 0.9049 |
| 2 | 2.0017 | 2.9901 0.9903 | 2.0006 | 0.7268 | 0.0907 | 2.0027 |
| | 0.9812 | 0.0907 6.343 | 0.9739 | 0.0907 | 0.6343 | 0.9078 |
| 3 | 2.9766 | 2.5427 0.7251 | 2.9517 | 0.7008 | 0.0823 | 2.9546 |
| | 0.9739 | 0.7251 1.6343 | 0.9179 | 0.0823 | 0.9897 | 0.9358 |
| 4 | 3.8930 | 2.4632 0.6800 | 4.0249 | 0.6956 | 0.0796 | 3.9975 |
| | 0.9384 | 0.6800 1.5977 | 1.0983 | 0.0796 | 0.6343 | 1.0439 |
| 5 | 5.0415 | 2.5011 0.6738 | 4.9957 | 0.6945 | 0.0793 | 5.0119 |
| | 1.0439 | 0.6738 1.5941 | 1.0720 | 0.0793 | 0.9897 | 1.0569 |
| 6 | 6.0689 | 2.4471 0.6732 | 6.0059 | 0.6944 | 0.0793 | 6.0234 |
| | 1.0569 | 0.6732 1.5939 | 1.0345 | 0.0793 | 0.6343 | 1.0386 |
| 7 | 7.0620 | 2.4469 0.6732 | 7.0724 | 0.6943 | 0.0793 | 7.0590 |
| | 1.0386 | 0.6732 1.5938 | 0.9093 | 0.0793 | 0.6343 | 0.9626 |
| 8 | 8.0217 | 2.4469 0.6732 | 8.0391 | 0.6943 | 0.0793 | 8.0307 |
| | 0.9626 | 0.6732 1.5938 | 0.9240 | 0.0793 | 0.6343 | 0.9411 |
| 9 | 8.9718 | 2.4469 0.6732 | 9.0247 | 0.6943 | 0.0793 | 9.0093 |
| | 0.9411 | 0.6732 1.5938 | 0.9505 | 0.0793 | 0.6343 | 0.9509 |
| 10 | 9.9602 | 2.4469 0.6732 | 10.0470 | 0.6943 | 0.0793 | 10.0180 |
| | 0.9509 | 0.6732 1.5938 | 0.9216 | 0.0793 | 0.6343 | 0.9404 |

68
A.3.5 $Q > R$, Error = 0.1

This trial assigns a higher uncertainty to the model. Intuition says that if the predictor is uncertain, trust the measurements more. This is exactly what the filter does.

$$Q = \begin{bmatrix} 2 & 0 \\ 0 & 4 \end{bmatrix}, \quad R = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad Error = \pm 10\%$$

![Figure A.11: Filter error. Prediction stage error (left) and update stage error (right). The filter error is in black, the measurement error is in blue.](image)

69
Table A.5: Filter Summary - Inputs ± 10%, Q>R

<table>
<thead>
<tr>
<th>Step</th>
<th>Predict Stage</th>
<th>Update Stage</th>
<th>Predict Stage</th>
<th>Update Stage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>State</td>
<td>Covariance</td>
<td>Input</td>
<td>Kalman Gain</td>
</tr>
<tr>
<td>0</td>
<td>0.0000</td>
<td>100.00</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td></td>
<td>0.0000</td>
<td>0.0000</td>
<td>100.00</td>
<td>0.0000</td>
</tr>
<tr>
<td>1</td>
<td>0.0000</td>
<td>202.00</td>
<td>100.00</td>
<td>0.9290</td>
</tr>
<tr>
<td></td>
<td>0.0000</td>
<td>100.00</td>
<td>104.00</td>
<td>0.9271</td>
</tr>
<tr>
<td>2</td>
<td>1.8472</td>
<td>3.9904</td>
<td>0.9908</td>
<td>2.0770</td>
</tr>
<tr>
<td></td>
<td>0.9186</td>
<td>0.9908</td>
<td>4.9820</td>
<td>0.9241</td>
</tr>
<tr>
<td>3</td>
<td>2.9606</td>
<td>3.6885</td>
<td>0.8614</td>
<td>2.9668</td>
</tr>
<tr>
<td></td>
<td>0.9310</td>
<td>0.8614</td>
<td>4.8271</td>
<td>0.9140</td>
</tr>
<tr>
<td>4</td>
<td>3.8822</td>
<td>3.6691</td>
<td>0.8560</td>
<td>4.0655</td>
</tr>
<tr>
<td></td>
<td>0.9172</td>
<td>0.8560</td>
<td>4.8235</td>
<td>0.9954</td>
</tr>
<tr>
<td>5</td>
<td>5.0153</td>
<td>3.6681</td>
<td>0.8558</td>
<td>4.9722</td>
</tr>
<tr>
<td></td>
<td>0.9875</td>
<td>0.8558</td>
<td>4.8235</td>
<td>0.9555</td>
</tr>
<tr>
<td>6</td>
<td>5.9404</td>
<td>3.6680</td>
<td>0.8558</td>
<td>6.0084</td>
</tr>
<tr>
<td></td>
<td>0.9598</td>
<td>0.8558</td>
<td>4.8235</td>
<td>1.0399</td>
</tr>
<tr>
<td>7</td>
<td>7.0240</td>
<td>3.6680</td>
<td>0.8558</td>
<td>6.9181</td>
</tr>
<tr>
<td></td>
<td>1.0279</td>
<td>0.8558</td>
<td>4.8235</td>
<td>1.0225</td>
</tr>
<tr>
<td>8</td>
<td>7.9613</td>
<td>3.6680</td>
<td>0.8558</td>
<td>8.0385</td>
</tr>
<tr>
<td></td>
<td>1.0200</td>
<td>0.8558</td>
<td>4.8235</td>
<td>0.9578</td>
</tr>
<tr>
<td>9</td>
<td>8.9908</td>
<td>3.6680</td>
<td>0.8558</td>
<td>8.9455</td>
</tr>
<tr>
<td></td>
<td>0.9713</td>
<td>0.8558</td>
<td>4.8235</td>
<td>1.0547</td>
</tr>
<tr>
<td>10</td>
<td>9.9967</td>
<td>3.6680</td>
<td>0.8558</td>
<td>10.054</td>
</tr>
<tr>
<td></td>
<td>1.0385</td>
<td>0.8558</td>
<td>4.8235</td>
<td>1.0779</td>
</tr>
</tbody>
</table>
A.3.6 \(Q \prec R, \text{ Error} = 0.1 \)

This trial would make more sense in the current scheme. The model is an accurate representation of the system, so the errors in the measurements should have more uncertainty associated with them. With this information, the filter behaves more as would be desired. The relatively large swings in the measurements are mitigated by the model and the error in the output is less than the measurements alone.

\[
Q = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad R = \begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix}, \quad \text{Error} = \pm 10\%
\]

Figure A.12: Filter error. Prediction stage error (left) and update stage error (right). The filter error is in black, the measurement error is in blue.
Table A.6: Filter Summary - Inputs $\pm 10\%$, Q$\lt R$

<table>
<thead>
<tr>
<th>Step</th>
<th>Predict Stage</th>
<th>Update Stage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>State</td>
<td>Covariance</td>
</tr>
<tr>
<td>0</td>
<td>0.0000</td>
<td>100.00</td>
</tr>
<tr>
<td></td>
<td>0.0000</td>
<td>100.00</td>
</tr>
<tr>
<td>1</td>
<td>0.0000</td>
<td>201.00</td>
</tr>
<tr>
<td></td>
<td>0.0000</td>
<td>101.00</td>
</tr>
<tr>
<td></td>
<td>0.9046</td>
<td>4.7761</td>
</tr>
<tr>
<td></td>
<td>0.9046</td>
<td>100.00</td>
</tr>
<tr>
<td>2</td>
<td>1.9279</td>
<td>10.763</td>
</tr>
<tr>
<td></td>
<td>0.9046</td>
<td>4.7761</td>
</tr>
<tr>
<td></td>
<td>0.9046</td>
<td>100.00</td>
</tr>
<tr>
<td></td>
<td>0.9046</td>
<td>4.7761</td>
</tr>
<tr>
<td>3</td>
<td>2.9468</td>
<td>8.0819</td>
</tr>
<tr>
<td></td>
<td>0.9538</td>
<td>3.0888</td>
</tr>
<tr>
<td></td>
<td>0.9538</td>
<td>100.00</td>
</tr>
<tr>
<td></td>
<td>0.9538</td>
<td>3.0888</td>
</tr>
<tr>
<td>4</td>
<td>3.9878</td>
<td>7.1513</td>
</tr>
<tr>
<td></td>
<td>0.9723</td>
<td>2.1450</td>
</tr>
<tr>
<td></td>
<td>0.9723</td>
<td>2.1450</td>
</tr>
<tr>
<td></td>
<td>0.9723</td>
<td>2.1450</td>
</tr>
<tr>
<td>5</td>
<td>5.0437</td>
<td>6.7293</td>
</tr>
<tr>
<td></td>
<td>1.0069</td>
<td>2.2239</td>
</tr>
<tr>
<td></td>
<td>1.0069</td>
<td>2.2239</td>
</tr>
<tr>
<td></td>
<td>1.0069</td>
<td>2.2239</td>
</tr>
<tr>
<td>6</td>
<td>5.9327</td>
<td>6.5549</td>
</tr>
<tr>
<td></td>
<td>0.9723</td>
<td>2.1450</td>
</tr>
<tr>
<td></td>
<td>0.9723</td>
<td>2.1450</td>
</tr>
<tr>
<td></td>
<td>0.9723</td>
<td>2.1450</td>
</tr>
<tr>
<td>7</td>
<td>7.0148</td>
<td>6.4943</td>
</tr>
<tr>
<td></td>
<td>1.0191</td>
<td>2.1239</td>
</tr>
<tr>
<td></td>
<td>1.0191</td>
<td>2.1239</td>
</tr>
<tr>
<td></td>
<td>1.0191</td>
<td>2.1239</td>
</tr>
<tr>
<td>8</td>
<td>8.0294</td>
<td>6.4769</td>
</tr>
<tr>
<td></td>
<td>0.9946</td>
<td>2.1197</td>
</tr>
<tr>
<td></td>
<td>0.9946</td>
<td>2.1197</td>
</tr>
<tr>
<td></td>
<td>0.9946</td>
<td>2.1197</td>
</tr>
<tr>
<td>9</td>
<td>9.0089</td>
<td>6.4730</td>
</tr>
<tr>
<td></td>
<td>0.9784</td>
<td>2.1192</td>
</tr>
<tr>
<td></td>
<td>0.9784</td>
<td>2.1192</td>
</tr>
<tr>
<td></td>
<td>3.0888</td>
<td>2.4634</td>
</tr>
<tr>
<td>10</td>
<td>10.024</td>
<td>6.4722</td>
</tr>
<tr>
<td></td>
<td>1.0017</td>
<td>2.1191</td>
</tr>
<tr>
<td></td>
<td>1.0017</td>
<td>2.1191</td>
</tr>
<tr>
<td></td>
<td>3.0888</td>
<td>2.4634</td>
</tr>
</tbody>
</table>

72
A.3.7 Modeled Q, Modeled R, Error = 0.5

In the previous examples, the uncertainties have been randomly assigned values. These values have a direct effect on the measure of error in the filter, the covariance matrix. In order for this value to have some useful meaning, the errors in the uncertainty matrices need to correspond to measures of uncertainties. To test the filter further, the error will be increased to 50% of the measurement unit.

In this example, the model is considered accurate, albeit operating on a potentially inaccurate state. The uncertainty should therefore be low, but in units that reflect the actual state. The measurement uncertainty is given by the sensor that is measuring the state. In this case the standard deviation of the uncertainty will be assumed to be half of a measurement unit, the same as the error reported by the sensor.

\[
Q = \begin{bmatrix} 0.1 & 0 \\ 0 & 0.1 \end{bmatrix}, \quad R = \begin{bmatrix} 0.25 & 0 \\ 0 & 0.25 \end{bmatrix}, \quad Error = \pm 50\%
\]

Despite the large errors in the measurement, the filter is able to use the model to eliminate some of the variation in the measurement. The standard deviation reported by the filter was less than that of the sensor, at 0.39 units.

Figure A.13: Filter error. Prediction stage error (left) and update stage error (right). The filter error is in black, the measurement error is in blue.
Table A.7: Filter Summary - Inputs ± 50%, Q,R Modeled

Step	Predict Stage		Update Stage		
	State	Covariance	Kalman Gain	State	Covariance
0	0.0000	100.00 0.0000	0.0000	0.0000	0.0000 0.0000
	0.0000	0.0000 100.00	0.0000	0.0000	0.0000 0.0000
1	0.0000	200.10 100.00	0.6472	0.9975 0.0024	0.6478 0.2493
	0.0000	100.00 100.10	0.8882	0.0024 0.9950	0.8854 0.0006
2	1.5332	0.5993 0.2493	1.6998	0.6646 0.1396	1.6506 0.1661
	0.8854	0.2493 0.3487	0.9333	0.1396 0.5243	0.9338 0.0349
3	2.5845	0.4670 0.1659	3.1963	0.6210 0.1307	3.0127 0.1552
	0.9338	0.1659 0.2310	1.3029	0.1307 0.4352	1.1744 0.0326
4	4.1872	0.4294 0.1414	3.9523	0.6068 0.1212	3.9875 0.1517
	1.1744	0.1414 0.2088	0.7029	0.1212 0.4177	0.9490 0.0303
5	4.9365	0.4167 0.1347	5.0469	0.6011 0.1182	4.9744 0.1502
	0.9490	0.1347 0.2044	0.7077	0.1182 0.4177	0.8619 0.0295
6	5.8363	0.4131 0.1332	5.9560	0.5993 0.1176	5.8720 0.1498
	0.8619	0.1332 0.2036	0.5557	0.1176 0.4144	0.7491 0.0294
7	6.6212	0.4122 0.1330	7.4171	0.5988 0.1176	7.1372 0.1497
	0.7491	0.1330 0.2036	1.0839	0.1176 0.4143	0.9814 0.0294
8	8.1187	0.4121 0.1329	7.7467	0.5988 0.1176	7.8900 0.1497
	0.9814	0.1329 0.2035	0.8375	0.1176 0.4143	0.8780 0.0294
9	8.7571	0.4121 0.1329	9.2871	0.5987 0.1176	9.0615 0.1496
	0.8780	0.1329 0.2035	0.7683	0.1176 0.4143	0.8949 0.0294
10	9.9565	0.4121 0.1329	10.1630	0.5987 0.1176	10.046 0.1496
	0.8949	0.1329 0.2035	0.6084	0.1176 0.4143	0.8005 0.0294